Атомная энергетика и атомный реактор

Сущность атомных ядер, энергетическая связь между ними. Общее понятие радиоактивности, альфа и бета распада, гамма излучения. Закон радиоактивного распада. Принципы, особенности и безопасность построения ядерных реакторов. Проблема развития энергетики.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 21.04.2010
Размер файла 82,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В твэлах происходит генерация основной доли тепловой энергии и передача ее теплоносителю. Более 90% всей энергии, освобождающейся при делении тяжелых ядер, выделяется внутрь твэлов и отводится обтекающим твэлы теплоносителем. Твэлы работают в очень тяжелых тепловых режимах: максимальная плотность теплового потока от твэла к теплоносителю достигает (1 - 2)106 Вт/ м2, тогда как в современных паровых котлах она равна (2 - 3)105 Вт/м2. Кроме того, в сравнительно небольшом объеме ядерного топлива выделяется большое количество теплоты, т.е. энергонапряженность ядерного топлива также очень высока. Удельное тепловыделение в активной зоне достигает 108 -109 Вт/м3, в то время как в современных паровых котлах оно не превышает 107Вт/м3.

Большие тепловые потоки, проходящие через поверхность твэлов, и значительная энергонапряженность топлива требуют исключительно высокой стойкости и надежности твэлов. Помимо этого, условия работы твэлов осложняются высокой рабочей температурой, достигающей 300 - 600 oС на поверхности оболочки, возможностью тепловых ударов, вибрацией, наличием потока нейтронов (флюенс достигает 1027 нейтрон/м2).

К твэлам предъявляются высокие технические требования: простота конструкции; механическая устойчивость и прочность в потоке теплоносителя, обеспечивающая сохранение размеров и герметичности; малое поглощение нейтронов конструкционным материалом твэла и минимум конструкционного материла в активной зоне; отсутствие взаимодействие ядерного топлива и продуктов деления с оболочкой твэлов, теплоносителем и замедлителем при рабочих температурах. Геометрическая форма твэла должна обеспечивать требуемое соотношение площади поверхности и объема и максимальную интенсивность отвода теплоты теплоносителем от всей поверхности твэла, а также гарантировать большую глубину выгорания ядерного топлива и высокую степень удержания продуктов деления. Твэлы должны обладать радиационной стойкостью, иметь требуемые размеры и конструкцию, обеспечивающие возможность быстрого проведения перегрузочных операций; обладать простотой и экономичностью регенерации ядерного топлива и низкой стоимостью.

В целях безопасности надежная герметичность оболочек тепловыводящих элементов должна сохраняться в течение всего срока работы активной зоны (3 -5 лет) и последующего хранения отработавших твэлов до отправки на переработку (1 -3 года). При проектировании активной зоны необходимо заранее установить и обосновать допустимые пределы повреждения твэлов (количество и степень повреждения). Активная зона проектируется таким образом, чтобы при работе на протяжении всего ее расчетного срока службы не превышались установленные пределы повреждения твэлов. Выполнение указанных требований обеспечивается конструкцией активной зоны, качеством теплоносителем, характеристиками и надежностью системы теплоотвода. В процессе эксплуатации возможно нарушение герметичности оболочек отдельных твэлов. Различают два вида такого нарушения: образование микротрещин, через которые газообразные продукты деления выходят из твэла в теплоноситель (дефект типа газовой плотности); возникновение дефектов, при которых возможен прямой контакт топлива с теплоносителем.

Условия работы твэлов в значительной мере определяются конструкцией активной зоны, которая должна обеспечивать проектную геометрию размещения твэлов и необходимое с точки зрения температурных условий распределения теплоносителя. Через активную зону при работе реактора из мощности должен поддерживаться стабильный расход теплоносителя, гарантирующего надежный теплоотвод. Активная зона должна быть оснащена датчиками внутриреакторного контроля, которые дают информацию о распределении мощности, нейтронного потока, температурных условиях твэлов и расходе теплоносителя.

Активная зона энергетического реактора должна быть спроектирована так, чтобы внутренний механизм взаимодействия нейтронно-физических и теплофизических процессов при любых возмущениях коэффициента размножения устанавливал новый безопасный уровень мощности. Практически безопасность ядерной энергетической установки обеспечивается, с одной стороны, устойчивостью реактора (уменьшением коэффициента размножения с ростом температуры и мощности активной зоны), а с другой стороны - надежностью системы автоматического регулирования и защиты.

С целью обеспечения безопасности в глубину конструкция активной зоны и характеристики ядерного топлива должны исключать возможность образования критических масс делящихся материалов при разрушении активной зоны и расплавлении ядерного топлива. При конструировании активной зоны должна быть предусмотрена возможность введения поглотителя нейтронов для прекращения цепной реакции в любых случаях, связанных с нарушением охлаждения активной зоны.

Активная зона, содержащая большие объемы ядерного топлива для компенсации выгорания, отравления и температурного эффекта, имеет как бы несколько критических масс. Поэтому каждый критический объем топлива должен быть обеспечен средствами компенсации реактивности. Они должны размещаться в активной зоне таким образом, чтобы исключить возможность возникновения локальных критмасс.

13. Безопасность ядерных реакторов

Безопасность ядерных реакторов обычно рассматривают с двух точек зрения: ядерной и радиационной. Оценка ядерной безопасности предполагает анализ тех характеристик реактора, которые определяют масштаб возможных изменений мощности реактора, возникающих при различных аварийных ситуациях в системе. Под радиационной безопасностью понимают меры, принимаемые для защиты обслуживающего персонала и населения от неконтролируемой утечки радиоактивности при любом режиме работы реактора, включая аварийный. Радиационная безопасность определяется надежностью системы и степенью гарантий в случае предельно возможных аварий.

Можно ожидать, что, по мере того как ядерная энергетика будет приобретать доминирующее положение в структуре всей энергетики в целом, преимущества теплотехнической концепции будут все больше утрачиваться. В этих условиях возрастет притягательность концепции физико-химического направления в реакторостроении, которая позволит достигнуть более высоких качественных характеристик АЭС и решить ряд задач энергетики, недоступных для твердотопливных реакторов.

ЖидкоСолевой Реактор (ЖСР) в отношении ядерной безопасности имеют ряд характерных особенностей по сравнению с твердотопливными реакторами состоящими в следующем:

передача тепла от топлива к промежуточному теплоносителю происходит вне активной зоны реактора, поэтому разрушение поверхности раздела между топливом и теплоносителем не приводит к серьезным нарушениям режима работы активной зоны и изменениям радиоактивности;

топливо в ЖСР выполняет одновременно функцию теплоносителя первого контура, поэтому в принципе исключается весь комплекс проблем, которые возникают в твердотопливных реакторах при авариях, приводящих к потере теплоносителя;

непрерывный вывод продуктов деления, особенно нейтронных ядов, а также возможность непрерывной подпитки топливом сводит к минимуму начальный запас реактивности, компенсируемый поглощающими стержнями.

К изменению реактивности ЖСР могут привести следующие аварийные ситуации:

увеличение концентрации делящихся материалов в топливной соли;

изменение эффективной доли запаздывающих нейтронов;

изменение состава и плотности топливной соли и перераспределение ее в активной зоне;

изменение температуры активной зоны.

Подробный анализ аварийных ситуаций показывает, что особенности присущие ЖСР позволяют обеспечить достаточно высокую ядерную безопасность и надежно исключить возможность нарушения герметичности топливного контура

Высокая ядерная безопасность, присущая ЖСР, имеет свою обратную сторону и сопряжена с проблемами, которых нет у твердотопливных реакторов. В отличие от них радиоактивные материалы в ЖСР находятся в жидкой или газовой форме при высокой температуре и циркулирует в топливном контуре и контуре системы переработки топлива. Опасность утечки радиоактивности при нарушении герметичности топливного контура здесь значительно более высокая, чем у твердотопливных реакторов при нарушении твэлов. Поэтому радиоактивная безопасность ЖСР в первую очередь связана с надежной герметизацией топливного контура.

Одной из важнейших проблем при создании ядерного реактора является проблема проектирования средств управления и в особенности Системы Аварийного Отключения (САО). САО должна обеспечивать автоматическую остановку реактора ( быстрое гашение цепной реакции) при возникновении аварийной ситуации. Для реализации этого требования САО должна иметь широко разветвленную систему автоматического диагностирования аварийных ситуаций ( событий, состояний оборудования, значений параметров, характеризирующих состояние ядерного реактора и его систем).

Кроме того существует проблема транспортировки облученных элементов на радиохимические предприятия, что означает что радиоактивные элементы будут “размазаны” по весьма широкой территории. При этом возникает как опасность радиоактивного загрязнения среды вследствие возможных аварий, так и опасность хищения радиоактивных материалов.

14. Проблемы развития энергетики

Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления различных видов энергии.

Как известно, в основе производства тепловой и электрической энергии лежит процесс сжигания ископаемых энергоресурсов :

1.угля

2.нефти

3.газа

а в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов.

Масштаб добычи и расходования ископаемых энергоресурсов, металлов, потребления воды, воздуха для производства необходимого человечеству количества энергии огромен, а запасы ресурсов, увы, ограничены. Особенно остро стоит проблема быстрого исчерпания запасов органических природных энергоресурсов.

1 кг природного урана заменяет 20 т угля.

Мировые запасы энергоресурсов оцениваются величиной 12,8*1012 т.у.т. (тонн условного топлива).

Из этого количества примерно 1/3 могут быть извлечены с использованием современной техники при умеренной стоимости топливодобычи. С другой стороны современнные потребности в энергоносителях составляют 111 т.у.т. в год, и растут со скоростью 3-4% в год, т.е. удваиваются каждые 20 лет.

Легко оценить, что органические ископаемые ресурсы, даже если учесть вероятное замедление темпов роста энергопотребления, будут в значительной мере израсходованы в будущем веке.

Отметим, что при сжигании ископаемых углей и нефти, ежегодно образуется до 400 млн.т. сернистого газа и окислов азота, т.е. около 70 кг. вредных веществ на каждого жителя земли в год.

Использование энергии атомного ядра, развитие атомной энергетики снимает остроту этой проблемы.

Открытие деления тяжелых ядер при захвате нейтронов, сделавшее наш век атомным, прибавило к запасам энергетического ископаемого топлива существенный клад ядерного горючего. Запасы урана в земной коре оцениваются огромной цифрой 1014 тонн. Однако основная масса этого богатства находится в рассеянном состоянии - в гранитах, базальтах. В водах мирового океана количество урана достигает 436 тонн. Однако богатых месторождений урана, где добыча была бы недорога, известно сравнительно немного. Поэтому массу ресурсов урана, которую можно добыть при современной технологии и при умеренных ценах, оценивают в 108 тонн. Ежегодные потребности в уране составляют, по современным оценкам, 104 тонны естественного урана. Так что эти запасы позволяют пользоваться ими практически неограниченное время.

Другая важная проблема современного индустриального общества обеспечение сохранности природы, чистоты воды, воздуха.

Известна озабоченность ученых по поводу "парникового эффекта", возникающего из-за выбросов углекислого газа при сжигании органического топлива, и соответствующего глобального потепления климата на нашей планете. Да и проблемы загазованности воздуха, "кислых" дождей, отравления рек приблизились во многих районах к критической черте.

Атомная энергетика не потребляет кислорода и имеет ничтожное количество выбросов при нормальной эксплуатации. Если атомная энергетика заменит обычную энергетику, то возможности возникновения "парника" с тяжелыми экологическими последствиями глобального потепления будут устранены.

Чрезвычайно важным обстоятельством является тот факт, что атомная энергетика доказала свою экономическую эффективность практически во всех районах земного шара. Кроме того, даже при большом масштабе энергопроизводства на АС атомная энергетика не создаст особых транспортных проблем, поскольку требует ничтожных транспортных расходов, что освобождает общества от трудностей постоянных перевозок огромных количеств органического топлива.

15. Ядерный синтез завтра

В будущем планируется, прежде всего создание следующего поколения токамаков, в которых можно достичь самоподдерживающегося синтеза. С этой целью разрабатывается Опытный термоядерный реактор (ОТР).

В ОТР ставится целью само поддержание реакции на таком уровне, чтобы отношение полезного выхода энергии к затраченной (обозначается Q) было больше или по крайней мере равно единице: Q=1. Это условие серьёзный этап отработки всех элементов системы на пути создания коммерческого реактора с Q=5. По имеющимся оценкам, лишь при этом значении Q достигается самоокупаемость термоядерного энергоисточника, когда окупаются затраты на все обслуживающие процессы, включая и социально-бытовые затраты. А пока что на американском TFTR достигнуто значение Q=0,2 0,4.

Существуют также и другие проблемы. Например, первая стенка то есть оболочка тороидальной вакуумной камеры -- самая напряжённая, буквально многострадальная часть всей конструкции. В ОТР её объём примерно 300 м3, а площадь поверхности около 400 м2. Стенка должна быть достаточно прочной, чтобы противостоять атмосферному давлению и механическим силам, возникающим от магнитного поля, и достаточно тонкой, чтобы без значительного перепада температур отводить тепловые потоки от плазмы к воде, циркулирующей на внешней стороне тороида. Её оптимальная толщина 2 мм. В качестве материалов выбраны аустенитные стали либо никелевые и титановые сплавы.

Планируется установка Евратомом NET (Next Europeus Tor), во многом схожим с ОТР, это следующее поколение токамаков после JET и Т-15.

NET предполагалось соорудить в течение 1994-1999 годов. Первый этап исследований планируется провести за 3-4 года.

Говорят и о следующем поколении после NET -- это уже “настоящий” термоядерный реактор, условно названный DEMO. Впрочем, не всё пока ясно даже и с NET, поскольку есть планы сооружения нескольких международных установок.

Заключение

Энергетическая проблема - одна из важнейших проблем, которые сегодня приходится решать человечеству. Уже стали привычными такие достижения науки и техники, как средства мгновенной связи, быстрый транспорт, освоение космического пространства. Но все это требует огромных затрат энергии. Резкий рост производства и потребления энергии выдвинул новую острую проблему загрязнения окружающей среды, которое представляет серьезную опасность для человечества.

Мировые энергетические потребности в ближайшее десятилетия будут интенсивно возрастать. Какой-либо один источник энергии не сможет их обеспечить, поэтому необходимо развивать все источники энергии и эффективно использовать энергетические ресурсы.

На ближайшем этапе развития энергетики ( до 2000 г.) и первые десятилетия XXI в. Наиболее перспективными останутся угольная энергетика и ядерная энергетика с реакторами на тепловых и быстрых нейтронах.

Сегодня масштабы потребления энергии цивилизаций даже второго класса выглядит фантастикой.

Однако можно надеяться, что человечество не остановится на пути прогресса, связанного с потреблением энергии во всевозрастающих количествах.

Еще не так давно слова “атомная энергетика” и “научно-технический прогресс” сливались в неразрывное целое. И тому было немало причин. Молодая отрасль требовала прорыва в будущее. Она стимулировала развития целого ряда новых направлений в физике, химии, биологии. Более того, открывалась очень радужная перспектива решения энергетических проблем, в первую очередь замены традиционных видов топлива принципиально иным - компактным, “бездымным” и, что особенно важно, практически неисчерпаемым. Именно по этому атомная энергетика сразу получила приоритетное развитие во многих промышленно развитых странах.

Но со временем ситуация изменилась. Чернобыльский взрыв породил во всем мире бурные дискуссии. Предлагалось разом закрыть все АЭС “пока не поздно”. Но когда поостыл горячий “чернобыльский след”, прекратились яростные споры. Как-то незаметно все стали реалистами. Закрыть существующие АЭС никто уже всерьез не требует, - но ведь их триумфальное шествие по планете отныне не предвидится. Судя по всему, они сохранили ограниченное значение, причем особое внимание будет уделяться именно вопросам их безопасности и экологической чистоты.


Подобные документы

  • Типы радиоактивного распада и радиоактивного излучения. Закон радиоактивного распада. Анализы, основанные на измерении радиоактивности. Использование естественной радиоактивности в анализе. Метод изотропного разбавления, радиометрическое титрование.

    реферат [23,4 K], добавлен 11.03.2012

  • История развития атомной энергетики. Типы ядерных энергетических реакторов. Переработка и хранение ядерных отходов. Проблема эксплуатационной безопасности. Оценка состояния на сегодняшний день и перспективы её развития. Строительство АЭС в Беларуси.

    курсовая работа [41,8 K], добавлен 12.10.2011

  • Сведения о радиоактивных излучениях. Взаимодействие альфа-, бета- и гамма-частиц с веществом. Строение атомного ядра. Понятие радиоактивного распада. Особенности взаимодействия нейтронов с веществом. Коэффициент качества для различных видов излучений.

    реферат [377,6 K], добавлен 30.01.2010

  • Даты и события в мировой энергетической системе. Схема выработки электроэнергии. Изотопы естественного урана. Реакция деления ядер. Типы ядерных реакторов. Доступность энергетических ресурсов. Количество атомных блоков по странам. Атомные станции РФ.

    презентация [3,4 M], добавлен 29.09.2014

  • Физика атомного ядра. Структура атомных ядер. Ядерные силы. Энергия связи ядер. Дефект массы. Ядерные силы. Ядерные реакции. Закон радиоактивного распада. Измерение радиоактивности и радиационная защита.

    реферат [306,3 K], добавлен 08.05.2003

  • Ядерно-физические свойства и радиоактивность тяжелых элементов. Альфа- и бета-превращения. Сущность гамма-излучения. Радиоактивное превращение. Спектры рассеянного гамма-излучения сред с разным порядковым номером. Физика ядерного магнитного резонанса.

    презентация [1,0 M], добавлен 15.10.2013

  • Сущность, устройство, типы и принцип действия ядерных реакторов, факторы и причины их опасности. Основное назначение реактора БН-350 в Актау. Особенности самообеспечения ядерной энергетики топливом. Технология производства реакторов с шаровой засыпкой.

    контрольная работа [1,7 M], добавлен 27.10.2009

  • Физические основы ядерной энергетики. Основы теории ядерных реакторов - принцип вырабатывания электроэнергии. Конструктивные схемы реакторов. Конструкции оборудования атомной электростанции (АЭС). Вопросы техники безопасности на АЭС. Передвижные АЭС.

    реферат [62,7 K], добавлен 16.04.2008

  • Атомная энергия. Мощность Преобразование энергии. Ее виды и источники. История развития атомной энергетики. Радиационная безопасность атомных станций с опредленными типами реакторов. Модернизация и продление сроков эксплуатации энергоблоков АЭС.

    реферат [203,5 K], добавлен 24.06.2008

  • История развития атомной энергетики. Особенности ядерного реактора как источника теплоты, физическое обоснование происходящих при этом процессов. Устройство и принцип работы энергетических ядерных реакторов. Ядерная энергия, ее преимущества и недостатки.

    реферат [42,3 K], добавлен 09.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.