Лазеры на свободных электронах
Генерация СВЧ электронными потоками. Влияние релятивистского эффекта на длину волны излучения. Конструктивные элементы, режимы работы и классификация ЛСЭ. Экспериментальные исследования ЛСЭ на однородных ондуляторах, их применения в физике твердого тела.
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 15.07.2009 |
Размер файла | 850,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Дистанционное зондирование верхних слоев атмосферы (на высотах 100 - 500 км) методами резонансной флуоресценции и создание лазера для спектроскопии молекул представляют собой другую область применения ЛСЭ с целью диагностики. ЛСЭ позволит разработать радарные системы высокого разрешения.
До сих пор не существует ЛСЭ, генерирующих излучение в УФ области; перестраиваемые интенсивные источники УФ излучения могут найти многочисленные применения, в частности в физике твердого тела, но до тех пор, пока не удастся преодолеть технических трудностей, нам придется довольствоваться спонтанным излучением электронов, получаемым из ондуляторов в высокоэнергетических накопителях, которые пригодны и для получения синхротронного излучения. Можно надеяться, что проводимое в настоящее время совершенствование технологии изготовления зеркал и разработка специальных ускорителей позволят получить действующий ЛСЭ в УФ диапазоне до 1990 г. Разработка ЛСЭ рентгеновского диапазона имела бы неоценимое значение для таких целей, как изготовление оптических устройств высокого разрешения методами рентгеновской интерферометрии и голографии.
Найдут ЛСЭ применение и в лазерной хирургии и в фоторадиационной медицине. Небольшой размер пятна и возможность перестройки частоты означают, что в хирургии можно получить оптимальный эффект для конкретной облучаемой ткани в зависимости от длины волны при воздействии излучения ЛСЭ. В фоторадиационной медицине введенные предварительно в ткани красители активируются на определенных длинах волн. При активации красители выделяют свободный кислород и убивают клетку без хирургического вмешательства. Красители могут присоединяться к антителам, которые под действием лазерного света высвобождаются в определенных местах. Использование перестраиваемых лазеров позволит применять для этих целей различные типы красителей. Маломощные ЛСЭ можно устанавливать непосредственно в больницах.
Ускорители, используемые в физике высоких энергий, чрезвычайно громоздки, и в настоящее время ведутся исследования, направленные на получение более высоких ускоряющих полей, которые позволят сократить размеры ускорителей и увеличить энергию частиц. Известно, что сфокусированные высокоинтенсивные лазерные поля могут создавать поперечные электрические поля напряженностью порядка 109 В/см; это можно было бы использовать в ускорителе на ЛСЭ, чтобы ускорить поток позитронов или электронов, пролетающих в ондуляторе. Увеличение энергии частиц может быть достигнуто за счет последовательного изменения периода ондуляторного поля. Изменение начального периода ондулятора от 10 см до нескольких метров, позволит на длине в несколько километров получить энергию электронов более 100 ГэВ. Трудность здесь состоит в том, чтобы поддержать интенсивный лазерный пучок сфокусированным на таком большом расстоянии; Пеллегрини предложил для решения данной проблемы использовать оптические волноводы. Если реализация этого предложения будет успешной, то ЛСЭ вернет свой долг физике ускорителей.
Библиографический список
1. Карлов Н.В “Лекции по квантовой электронике” учеб. пособие -- М.: Наука, 1983
2. “Генераторы когерентного излучения на свободных электронах”: сб. статей, пер. с англ. под ред. А.А. Рухадзе -- М.: Мир, 1983
3. Федоров М.В. “Электрон в сильном световом поле” -- М: Наука, 1991
4. Маршалл Т. “Лазеры на свободных электронах” пер. с англ. -- М: Мир, 1987
Подобные документы
Момент инерции тела относительно неподвижной оси в случае непрерывного распределения масс однородных тел. Теорема Штейнера. Кинетическая энергия вращающегося твердого тела. Плоское движение твердого тела. Уравнение динамики вращательного движения.
презентация [163,8 K], добавлен 28.07.2015Принцип работы газодинамического лазера, его конструктивные особенности, энергетический баланс, кинетическая модель. Анализ и диагностика лазерного излучения. Текст расчета параметров газодинамического лазера, специфика их промышленного применения.
реферат [3,9 M], добавлен 26.11.2012Импульсные лазеры как источник высокоэнергетического излучения. Исследование концентрационной зависимости параметра кристаллической решетки и ширины запрещенной зоны твердого раствора методами рентгеновской дифрактометрии и оптической спектроскопии.
реферат [1,9 M], добавлен 26.06.2010Основы движения твердого тела. Сущность и законы, описывающие характер его поступательного перемещения. Описание вращения твердого тела вокруг неподвижной оси посредством формул. Особенности и базовые кинематические характеристики вращательного движения.
презентация [2,1 M], добавлен 24.10.2013Особенности и принципы осуществления позисторного эффекта в сегнетоэлектриках. Модели Хейванга и Джонкера. Технология и основные этапы получения позисторов, сферы их практического применения, экспериментальные исследования соответствующего эффекта.
курсовая работа [2,5 M], добавлен 21.12.2015Общие свойства твердого тела, его состояния. Локализированные и делокализированные состояния твердого тела, отличительные черты. Сущность, виды химической связи в твердых телах. Локальное и нелокальное описания в неискаженных решетках. Точечные дефекты.
учебное пособие [2,6 M], добавлен 21.02.2009Основные задачи динамики твердого тела. Шесть степеней свободы твердого тела: координаты центра масс и углы Эйлера, определяющие ориентацию тела относительно центра масс. Сведение к задаче о вращении вокруг неподвижной точки. Описание теоремы Гюйгенса.
презентация [772,2 K], добавлен 02.10.2013Основы динамики вращений: движение центра масс твердого тела, свойства моментов импульса и силы, условия равновесия. Изучение момента инерции тел, суть теоремы Штейнера. Расчет кинетической энергии вращающегося тела. Устройство и принцип работы гироскопа.
презентация [3,4 M], добавлен 23.10.2013- История возникновения и формирования квантовой механики и квантово-механической теории твердого тела
Экспериментальные основы и роль М. Планка в возникновении квантовой теории твердого тела. Основные закономерности фотоэффекта. Теория волновой механики, вклад в развитие квантово-механической теории и квантовой статистики А. Гейзенберга, Э. Шредингера.
доклад [473,4 K], добавлен 24.09.2019 Кинетическая энергия вращения твердого тела и момент инерции тела относительно нецентральной оси. Основной закон динамики вращения твердого тела. Вычисление моментов инерции некоторых тел правильной формы. Главные оси и главные моменты инерции.
реферат [287,6 K], добавлен 18.07.2013