История развития теории поля

Возникновение идей близкодействия и дальнодействия в физике Декарта, Ньютона. Представления о природе электричества и магнетизма в "эпоху невесомых". Установление связи электричества и магнетизма. Идея близкодействия Фарадея. Утверждение теории Максвелла.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 02.01.2009
Размер файла 49,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Максвелл использует метод аналогий и моделей. “Под физической аналогией, - пишет он, - я разумею то частное сходство двух каких-либо областей, благодаря которому одна является иллюстрацией другой”. И поскольку различные классы физических явлений могут иметь одинаковую математическую форму законов, то по известным решениям задач в одной области можно получить решения задач в другой.

Общность и взаимосвязь явлений природы проявляется, в частности, в том, что разнородные по природе явления описываются аналогичными математическими уравнениями (вспомним дифференциальные уравнения, описывающие разные по природе колебательные процессы). Но аналогичность математического описания не означает тождества природы явлений. И Максвелл это хорошо понимает, указывая неоднократно, что жидкость, которой он уподобляет электромагнитное поле, не тождественна с тем, что собой в действительности представляет электромагнитное поле. Аналогия с жидкостью есть лишь эвристический иллюстративный прием, но не более.

В дальнейшем Максвелл выдвигает различные механические модели электромагнитного поля, часто весьма причудливые и необычные (подчас даже представляя поле в виде системы, подобной сцепленным зубчатым колесам). Стремление Максвелла наглядно представить поле в виде механического образа вполне понятно. Это безусловная дань господствующему тогда механицизму, освященная традицией классической физики, для которой понять - значит наглядно представить. Кроме того, попытки такого рода связаны также еще с одной важнейшей чертой стиля мышления Максвелла - постоянным стремлением за математическим описанием видеть природу, придавать физический смысл любому уравнению физики. Максвелл говорил полушутя, что каждый физик хорошо сделает, если перед тем, как напишет слово “масса” или символ “m”, собственноручно подвесит гирю на веревке и толкнет ее, дабы убедиться в ее инертности.

Чрезвычайно характерно также и то, что Максвелл не придерживался какой-либо единственной модели поля, а заменял по мере работы над теорией одну модель другой. Модели ему помогали найти уравнения поля; он считал, что они помогут и тем, кто будет читать его работы. Это неоднозначность моделей, отсутствие у Максвелла приверженности к одной модели свидетельствуют о необычайной гибкости ума, чуждого консерватизма и догматизма, и объясняют то удивительнейшее явление, что Максвелл писал уравнения применительно к той или иной модели, веря в существование эфира.

Современная физика отбросила все эти модели, отбросила гипотезу эфира, а уравнения сохранились нетленными и описывают электромагнитное поле в его современном понимании.

И еще об одном методе, который использовал Максвелл, - методе математической гипотезы. По Максвеллу, электрический ток в проводнике создает магнитное поле, что Максвелл выражает в виде уравнений rot H=4 p j , т.е. “источник” магнитного поля - движущиеся в проводнике заряды. А в диэлектрике нет движения зарядов, но возможно существование изменяющегося электрического поля, связанного, как он считал, со смещением эфира в диэлектрике.

Максвелл предполагает, что это изменение электрического поля (“ток смещения”) порождает тоже магнитное поле, как и ток проводимости (что такое ток, в то время не знали). Эту гипотезу он выражает математически, добавляя в уравнение член, характеризующий быстроту изменения электрического поля, которое, таким образом, как и движущиеся заряды, становится “источником” магнитного поля. Если на мысль о возникновении электрического поля за счет изменения магнитного поля наталкивало явление электромагнитной индукции, то гипотеза о токах смещения не подсказывалась никакими фактами и являлась, видимо, плодом интуиции Максвелла.

И в заключении несколько слов о личности Максвелла. Максвелл - выходец из состоятельной семьи, представитель знатного и старинного шотландского рода Клерков. В Эдинбурге Максвелл оканчивает школу и университет, а затем продолжает образование в Кембридже. После окончания обучения он преподает физику в шотландском университете в Абердине, а затем в Королевском колледже в Лондоне.

Несколько плодотворных для работы лет он проводит в своем имении в Гленлере, после чего становится первым директором Кавендишской лаборатории в Кембридже, построенной и оборудованной при его непосредственном участии. Эту лабораторию возглавляли впоследствии Релей, Д. Томсон, Э. Резенфорд, У. Брегг.

Область научных интересов Максвелла необычайно широка. Помимо работ по электромагнетизму, он выполняет фундаментальные исследования по теории цветов и цветовому зрению, устойчивости колец Сатурна и по кинетической теории газов.

Максвелл отличался большой простотой, мягкостью, искренностью в общении с людьми, никогда не проявлял обидчивости и себялюбия, не стремился к славе, спокойно принимал критику в свой адрес, ценил и любил юмор. Самообладание и выдержка были всегда его спутниками и не покинули его тогда, когда он тяжело заболел и испытывал мучительные боли. Он мужественно встретил слова врача о том, что ему осталось жить вряд ли более месяца. Врач пишет: “Во время болезни, лицом к лицу со смертью он оставался таким же, как прежде. Спокойствие духа никогда не покидало его. Через несколько дней после возвращения в Кембридж его страдания приняли очень серьезный характер. Но он никогда не жаловался. Даже близость смерти не лишила его самообладания. Его ум оставался ясным до конца. Никто из моих пациентов не сознавал так трезво свою обреченность и не встречал смерти более спокойно”.

5 ноября 1879 г. в возрасте сорока восьми лет он умер. Теории Максвелла еще предстояло утвердить себя. Поначалу ее мало кто понимал. Даже Больцман считал ее “тайной за семью печатями” и в качестве эпиграфа к курсу лекций по теории Максвелла взял фразу из “Фауста”: “Я должен пот тяжелый лить, чтоб объяснить вам то, чего я сам не понимаю”.

Утверждение теории приходит тогда, когда ее выводы получают экспериментальное подтверждение, а его не было вплоть до 1887 г., когда Герц экспериментально получил электромагнитные волны.

7. Утверждение теории Максвелла.

Генрих Герц (1857-1894) уже в ранние годы проявил блестящие способности в самых разнообразных отраслях знаний. Он с одинаковым интересом и успехом изучал и физику, и арабский язык; к тому же имел хорошие ремесленные навыки, так что, когда Герц стал знаменитым ученым, мастер, учивший его токарному делу, с сожалением сказал, узнав о научной славе своего ученика: “Жаль, из него мог бы получиться отличный токарь!” Но он в течение всей своей жизни был чрезвычайно скромен в оценке своих способностей и достижений и поначалу даже считал, что занятия наукой - не его удел и в лучшем случае он может стать инженером. Однако интерес к науке берет свое, и уже будучи студентом высшей технической школы, он меняет свое решение. Он поступает в Берлинский университет, и с тех пор его научным руководителем становится Г. Гельмгольц, один из самых выдающихся физиков того времени. Окончив университет с отличием, Герц работает в разных учебных заведениях Германии.

То были годы, когда теория Максвелла еще не нашла безоговорочного признания среди физиков и многие отдавали предпочтение (в особенности в Германии) теориям, построенным в духе дальнодействия - теориям Вебера, Неймана и самого Гельмгольца, создавшего теорию, представляющую собой компромисс между близкодействием Максвелла и дальнодействия Вебера. В результате существования разнообразных теорий “область электродинамики, - по словам Гельмгольца, - превратилась в то время в бездорожную пустыню”.

Теории Максвелла явно не хватало экспериментального подтверждения. Лишь один ее вывод согласовывался с опытом. По Максвеллу, показатель преломления для диэлектриков n= O e .

Больцман подтвердил это. Но этого было, конечно, недостаточно, чтобы сделать уверенный выбор между теориями, тем более что для действия замкнутых токов обе теории приводили к одинаковым результатам и различные выводы получались лишь для действия на диэлектрик токов в незамкнутых цепях. В незамкнутых цепях, как уже было известно, можно возбудить электромагнитные колебания, и Гельмгольц предложил Герцу изучить действие этих колебаний на диэлектрик. По Максвеллу, в нем должен возникнуть “ток смещения”, т.е. колебания электрического поля, порождающие так же, как и в проводниках, магнитное поле.

Ток смещения - это то принципиально новое, что прежде всего отличало теорию Максвелла от других теорий. Герц правильно заметил, что эффект магнитного действия тока смещения может быть существенным лишь при высоких частотах колебаний в контуре, которые еще не умели возбуждать в то время. Поэтому Герц отказывается выполнить это исследование и лишь спустя несколько лет возвращается к задаче Гельмгольца. “Делом моего честолюбия, - писал Герц позднее, - оставалось все же найти решение заданной задачи каким-либо новым путем”. И на протяжении ряда лет Герц упорно продолжал думать над путями ее решения, проявляя изобретательность в области конструирования экспериментальных установок. С 1887 г. Герц начинает ставить свои замечательные опыты. Прежде всего он находит способ генерирования самых высокочастотных в то время колебаний, используя открытый колебательный контур - вибратор Герца. Обладая малой емкостью и индуктивностью, вибратор действительно позволял получать колебания высокой частоты, возникающие при проскакивании искр в разрядном промежутке диполя. Рядом с этим генератором находился незамкнутый виток. Герц обнаружил, что в момент разряда в генераторе происходит проскакивание искры и между незамкнутыми концами витка, расположенного недалеко от генератора. Уже само по себе это было необычайное явление - передача электродинамического действия на расстояние. Это были первые в мире передатчик и приемник.

Схема опыта Герца Продолжая опыты, Герц обнаружил, что искра во втором контуре имеет максимальную интенсивность, если контуры настроены в резонанс, т.е. имеют одинаковые собственные частоты колебаний. Таков еще один важнейший шаг, сделанный Герцем в исследовании электромагнитных волн, или, как говорил сам Герц, “электрических лучей” (он не сразу понял, что получил предсказанные Максвеллом волны). Герц видоизменил приемный контур и в конце концов придал ему вид, который теперь называется диполем Герца, - это прямой провод с искровым промежутком посередине.

Герц расположил около вибратора сначала металлический лист, а затем параллелепипед из диэлектрика и обнаружил, что искра в резонаторе теперь проскакивает при большем зазоре искрового промежутка. Это он объяснил тем, что в проводнике под действием колебаний вибратора возникают токи проводимости, а в диэлектрике - токи смещения, которые и показывают электромагнитное воздействие на резонатор. Это подтверждение об эквивалентности токов смещения и проводимости.

Герц удалял резонатор от вибратора - искровой разряд в резонаторе происходил и при расстояниях порядка полутора метров, а затем обнаруживался и на больших расстояниях. Особенно поразило Герца наличие заметного действия на больших расстояниях. До тех пор привыкли считать, что электрические силы убывают по закону обратного квадрата и, следовательно, с увеличением расстояния быстро становятся незаметными. Герц же открыл поле, отпочковавшееся от источника, напряженность которого убывала вблизи излучающего источника пропорционально первой, а не второй степени расстояния.

Продолжая исследования, Герц при удалении резонатора от вибратора обнаружил, что в большом помещении с увеличением расстояния размер искр не убывает монотонно, а периодически меняется. Он справедливо объяснил это тем, что происходит интерференция прямой волны и отраженной от стены, в результате чего образуется стоячая волна, в пучностях которой искра максимальна. Этот опыт наиболее убедительно доказывал, что электромагнитные волны, предсказанные Максвеллом, действительно существуют.

По Максвеллу, свет - это электромагнитные волны, следовательно, им должны быть присущи те же явления, что и свету. И Герц ставит опыты с целью проверки тождества световых и электромагнитных волн. Почти сразу он обнаруживает “тень” - непрозрачность металлических листов для “электрических лучей”, но не наблюдает огибания. “Не без удивления наблюдал я искры в закрытой комнате”, - пишет Герц об опытах, в которых генератор и приемник находились в соседних помещениях. Значит, диэлектрики “прозрачны” для волн. Но они должны вызывать преломление. И Герц обнаруживает явление преломления волн в асфальтовой призме весом более чем в тонну, причем отклонение соответствует тому, которое должно быть по Максвеллу. Последующие опыты показывают существование отражения волн, а затем и их поляризацию.

Герц ставит опыты между генератором и приемником решетку из параллельных проволок, от ориентации которой меняется интенсивность искры в приемнике (подобно тому, как аналогичный эффект обнаруживается в демонстрационных опытах с генератором сантиметровых волн). Зная период колебаний вибратора и измеряя длину волны, Герц вычисляет скорость распространения электромагнитных волн; она оказывается равной скорости света. “Мне представляется вполне вероятным, что описанные опыты доказывают идентичность света, тепловых лучей и электродинамического волнового движения”, - писал Герц. И в конце концов он утверждает: “Целью этих опытов была проверка основных гипотез теории Фарадея-Максвелла, а результат опытов есть подтверждение основных гипотез этой теории”. И в другом месте: “Все эти опыты очень просты в принципе, но тем не менее они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла”. Так поле, этот гипотетический объект теории Максвелла, превратилось в физическую реальность. В реальности поля после опытов Герца 1887-1888 гг. больше сомневаться не приходилось.

Герц придал уравнениям Максвелла современный вид, убедительно доказав своим творчеством справедливость его оценки Гельмгольцем: “Он одинаково способен как к овладению абстрактными математическими теориями, так и к решению вытекающих вопросов экспериментального порядка с большой ловкостью и большой изобретательностью в том, что касается методов”.

“Генрих Герц обеспечил себе своими открытиями долгую славу в науке. Но память о нем будет жить не только благодаря его работам, но и благодаря его личным достоинствам: его постоянной скромности, радостной готовности признать чужие заслуги, неизмеримой благодарности, которую он сохранил по отношению к учителям... Он сам жаждал только истины, которой он следовал с величайшей серьезностью и с полной отдачей сил. Никогда не было в его душе и тени тщеславия или личного интереса. Даже там, где он имел бесспорное право воспользоваться открытиями, он был склонен молча отойти в сторону”.

Опыты Герца утвердили теорию Максвелла в среде ученых. Но лучшими доказательствами истинности теории являлись не только опытные факты, но и практическое воплощение научных идей.

Не прошло и десятка лет со дня опытов Герца, как открытые им экспериментально электромагнитные волны начали применяться на практике. Любопытно, что сам Герц не мог себе представить практическую значимость открытых им радиоволн и даже написал в дрезденскую палату коммерции письмо о том, что исследование радиоволн надо запретить как бесполезное. То, что не удалось понять Герцу, со всей полнотой оценил А.С. Попов, впервые в мире применивший электромагнитные волны для радиосвязи и тем самым основавший современную радиофизику.

А.С. Попов (1859-1906), сын священника, не удовлетворившись образованием, полученным в духовном училище, поступает учиться на физико-математический факультет Петербургского университета. По окончании университета А.С. Попов работает преподавателем электротехники минного офицерского класса в Кронштадте, затем преподает физику, а в конце жизни становится директором Петербургского электротехнического института.

Получив сообщение об опытах Герца, А.С. Попов сразу же воспроизводит их и догадывается о возможности практического использования электромагнитных волн. Узнав об открытии Лоджем изменения сопротивления металлических опилок под действием электромагнитных волн (когерера), А.С. Попов создает свой знаменитый “грозоотметчик” - приемник радиосигналов, впервые используя для увеличения чувствительности приемника антенну.

7 мая 1895 г. А.С. Попов делает доклад на заседании Русского физико-химического общества о своем изобретении, чуть позже выходит его публикация в журнале. В конце своей статьи А.С. Попов пишет: “Мой прибор при дальнейшем усовершенствовании его может быть применен к передаче сигналов на расстоянии при помощи быстрых электрических колебаний, как только будет найден источник таких колебаний, обладающих достаточной энергией”. Приемник первой конструкции, продемонстрированный 7 мая, принимал излучаемые вибратором Герца радиоволны на расстоянии 60 м. 24 марта 1896 г. на заседании физико-химического общества А.С. Попов осуществляет первую в мире радиопередачу и прием осмысленного текста на расстоянии 250 м. В 1897 г. аппаратура Попова уже использовалась в спасательных работах по снятию севшего на камни корабля и при спасении рыбаков, оказавшихся в Финском заливе на льдине, оторвавшейся от берега.

Таким образом, есть полное основание утверждать, что радио - это детище гения русского человека. 1905 год - последний год в жизни А.С. Попова. Это было трудное для него время, когда студенты вверенного ему электротехнического института в ответ на расстрел рабочих на баррикадах Красной Пресни и другие репрессии царского правительства открыто выступили на стороне прогрессивных сил. Его неоднократно приглашают к градоначальнику Петербурга и к царскому министру Дурново, требуя навести порядок в институте. Он отказывается выполнить требование ввести в институт полицию и внедрить тайных агентов. Министр в ярости, но А.С. Попов уходит из кабинета министра, не отступив от своих убеждений. Домой он вернулся в тяжелом состоянии. Дочь Александра Степановича вспоминает: “Даже мы, дети, заметили что-то неладное. Он был бледен, губы его дрожали”. Через день, когда Петербург готовился встретить новый год, за несколько часов до 1906 г. А.С. Попов умирает от кровоизлияния в мозг. Прогрессивная общественность смерть А.С. Попова оценила как новую жертву “современных невыносимо тяжелых условий в России”. Открытие А.С. Попова вместе с опытами Герца явилось убедительнейшим доказательством того, что предсказанное в работах Фарадея и Максвелла электромагнитное поле есть субъективная реальность, а не гипотетический объект. Как же можно не верить в существование того, что человек не только воспроизвел в эксперименте, но и поставил себе на службу!

8. Заключение

Так после длительной борьбы теория близкодействия одержала окончательную победу. Электромагнитное поле обнаруживает себя как нечто реально существующее, это особая форма материи, осуществляющая взаимодействие между заряженными частицами, существующая независимо от наших представлений о нем. Доказательством его реальности является и конечная скорость распространения электромагнитных взаимодействий.


Подобные документы

  • Магнетизм как одно из проявлений электромагнитного взаимодействия, использование магнитного поля животными для ориентации в пространстве. История развития материалистической теории магнетизма, открытие притяжения и отталкивания слабомагнитных веществ.

    презентация [260,3 K], добавлен 13.04.2016

  • История открытия и исследования электричества. Возникновение и проявление электрического заряда в природе. Движущиеся заряды. Напряжение и электрический ток. Применение электричества, возникающего в результате трения, или статическое электричество.

    реферат [22,1 K], добавлен 08.05.2008

  • Векторный потенциал в квантовой механике. Физическое понятие диадного тензора. Импульс и энергии Первичного поля; реализация идеи Фарадея и Максвелла об электротоническом состоянии. Магнитный монополь в теории Первичного поля и калибровочных теориях.

    статья [53,0 K], добавлен 29.11.2014

  • Сущность и физическое обоснование явления электростатического электричества, этапы его исследований. Роль Бенджамина Франклина и Кулона в развитии данной сферы знаний. Закон и формула Шарль Огюстен де Кулона, пути ее разработки и доказательство.

    презентация [698,2 K], добавлен 29.11.2010

  • Рассмотрение идей Максвелла о возможности локализации энергии в пространстве, лишенном "обычной материи". Изучение теории первичного поля как источника специальной теории относительности. Представление элементарных частиц в виде автоволновых процессов.

    книга [793,6 K], добавлен 13.01.2015

  • Физическое содержание классической микроскопической электродинамики. Основная идея макроскопического описания системы многих частиц. Эргодическая гипотеза. Теорема Лиувилля. Физическая природа магнетизма. Сводка уравнений классической электродинамики.

    контрольная работа [193,6 K], добавлен 20.03.2016

  • Электричество — совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов. Открытие электричества: работы и теории естествоиспытателей Франклина, Гальвани, Вольта, Ампера, Кулона, Эрстеда, Фарадея, Гилберта.

    презентация [502,7 K], добавлен 29.01.2014

  • Знакомство с химическими процессами, приводящими к образованию электричества в батарейках. Батарейка как хранилище электричества, в котором электрический заряд создается в результате реакции между двумя веществами. Особенности создания лимонной батарейки.

    презентация [2,0 M], добавлен 19.05.2014

  • Взгляды ученых на проблему эфира. Возникновение представления об эфирной среде как о мировой среде задолго до Декарта в древнем Китае. Разработка теории физического вакуума. Предположения ученых о том, что физический вакуум способен рождать частицы.

    реферат [31,2 K], добавлен 05.12.2008

  • Анализ потребности производства в устройствах дозирования количества электричества. Основные понятия и определения по вопросу квантования количества электричества и электрической энергии. Оценка погрешности квантователя по вольт-секундной площади.

    дипломная работа [1,4 M], добавлен 22.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.