Основы логики

Определение логики. Цель познания. Разница между психологией и логикой. Основание деления. Грамматический анализ предложения. Аналитические и синтетические суждения. Отношение между подлежащим и сказуемым. Фигуры и модусы силлогизма. Понятие индукции.

Рубрика Философия
Вид книга
Язык русский
Дата добавления 30.11.2011
Размер файла 372,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом, когда мы определяем причинную связь по методу, называемому методом согласия, или сходства, то мы сравниваем между собой различные случаи, в которых изучаемое явление имеет место, выделяя в них части предшествующие и последующие.

Обозначим предшествующие буквами АВСДЕ, а последующие буквами а Ь с d е, и пусть а будет тем действием, причину которого нам нужно определить. Предположим, что мы исследовали А в соединении с В и С и что действий их было а в с; далее предположим, что мы исследовали А в соединении с D и Е, но без В и С, и что действие их было а d е. Тогда ни В, ни С, ни D, ни Е не могут быть причинами а, тогда как в первом случае а возникает без D и Е, а во втором случае без В и С. Поэтому причиной а может быть только A.

Способ определения причинности по первому методу может быть формулирован следующим образом: «если двум или большему числу случаев исследуемого явления природы обще лишь одно обстоятельство, .то, именно, то обстоятельство, в котором все случаи согласуются, есть причина данного явления».

Этот метод можно символизировать при помощи следующей схемы:

Случай 1 Случай 2

Предшествующие………………A B C A D E

Последующие……………………a b c a d e

Метод разницы. По второму методу исследование причинной связи явлений производится следующим образом. Положим, нам даётся ряд предшествующих А В С и ряд последующих а Ь с. Требуется определить, что является причиной а. Для этого мы в ряду предшествующих отбрасываем один член, например Л, тогда в ряду последующих отпадает член а. Если удаление Л влечёт за собой удаление а, то это является знаком того, что Л есть причина а. Таким образом, по этому методу мы сравниваем случай, в котором исследуемое явление имеется налицо, со случаем, в котором исследуемое явление не имеется налицо. Этот метод называется методом разницы, и правило его формулируется следующим образом:

«Если случай, в котором известное явление природы наступает, и случай, в котором оно не наступает, имеют общими аса обстоятельства, за исключением лишь одного, и это одно обстоятельство встречается только в первом случае, то обстоятельство, в котором оба случая разнятся между собою, есть причина или необходимая часть причины изучаемого явления природы».

Например, мы знаем, что лёгкие тела: перья, пух, вата, падают не с той скоростью, с какой падают другие тела. Мы можем поставить вопрос, какова причина неодинаковой скорости падения. Для разрешения этого вопроса мы в ряду обстоятельств, при которых совершается падение тел, устраняем воздух, именно мы, производим падение тел в стеклянном сосуде, из которого предварительно выкачали воздух. Тогда мы видим, что и указанные тела падают с той же скоростью, с какой падают и другие тела. Если устранение воздуха повлекло за собой устранение неравенства скорости падения, то это значит, что воздух, точнее сопротивление воздуха, есть причина неравенства скорости падения.

Схема метода разницы будет следующая:

Случай 1 Случай 2

Предшествующие …………………….A B C D B C D

Последующие………………………….a b c d b c d

Соединение метода сходства с методом разницы называется соединённым методом. Его можно пояснить при помощи следующего примера. Я заметил, что какое-нибудь растение находится постоянно в изобилии на какой-нибудь почве, но в то же время я нахожу, что оно не растёт ни на какой другой почве. Отсюда я делаю заключение, что причиной произрастания данного растения является именно почва (т. е. какие-нибудь химические составные части этой почвы).

Метод остатков. Сущность этого метода сводится к следующему. Нам дан ряд явлений ABC, которые мы считаем предшествующими, и затем дан ряд явлений а b с, которые мы считаем последующими. Пусть из предыдущего опыта нам известно, что А есть причина а, и В есть причина b; тогда, вычтя эти известные нам причины, мы получим, что С есть причина с. При помощи этого метода была открыта новая планета Нептун. Оказалось, что наблюдаемые движения Урана не находились в согласии с движениями, найденными посредством вычисления. Движение Урана то замедлялось, то ускорялось. Надо было определить причину нарушения движения Урана. Было известно, какое количество нарушения в движении Урана было обязано влиянию известных в то время небесных светил. Когда произвели вычитание этого известного уже воздействия, то в остатке получалось нарушение, причину которого нужно было найти. Нужно было предположить существование ещё какой-то неизвестной планеты, принимающей участие в определении пути Урана. Такой планетой оказался Нептун.

Правило метода остатков следующее:

«Вычти из данного явления природы ту часть его, которая, благодаря прежним индукциям, известна как действие определённых предшествующих, Я остающаяся часть (остаток) явления природы будет действием остальных предшествующих».

Метод сопутствующих изменений. Но бывают случаи, когда ни один из методов, приведённых выше, не оказывается пригодным для исследования причинной связи явлений. Это бывает именно тогда, когда известной явление по самой своей природе не может быть отделено или изолировано от другого явления. Например, «состояние теплоты» и «объём тел» не могут быть отделены друг от друга: теплоту нельзя выделить из тела так, чтобы она существовала отдельно от тел. Поэтому если нам нужно, например, изучить причинную связь между теплотой и объёмом тел, то на первый взгляд кажется, что изучение этой связи невозможно. Но в действительности, если мы не можем изолировать или исключить такое явление, то мы можем произвести какое-либо изменение в нём и затем видеть, вызывает ли это изменение какое-либо изменение в том явлении, которое с ним связано. Например, мы можем теплоту увеличивать или уменьшать и в то же время видеть, что происходит с объёмом. Если с увеличением теплоты увеличивается объём тела и с уменьшением теплоты уменьшается объём его, то мы заключаем, что теплота есть причина увеличения объёма.

«Если некоторое изменение предшествующего Л всегда сопровождается переменою в последующем а, а другие последующие бис остаются теми же, или, наоборот, если каждой перемене q предшествовало видоизменение в А, которое не было замечаемо в других предшествующих, то мы можем заключать, что а вполне или отчасти есть действие А или же, по крайней мере, соединено с ним некоторой связью причины с действием».

Для иллюстрации применения этого метода рассмотрим вопрос, какое влияние оказывает Луна на поверхность Земли. Мы не можем произвести опыт при отсутствии Луны, т. е. мы не можем устранить Луну, мы не можем наблюдать, какие явления уничтожаются на Земле вместе с уничтожением Луны, или какие явления возникают в то время, когда появляется Луна. Но мы можем наблюдать, какие возникают явления на Земле в то время, когда Луна изменяет своё положение по отношению к Земле. Именно мы находим, что все изменения в положении Луны сопровождаются соответственными изменениями в высоте воды в океане, причём местом изменения всегда бывает часть Земли или самая близкая к Луне, или самая далёкая от неё; отсюда мы убеждаемся, что Луна вполне или отчасти есть причина приливов и отливов.

Метод сопутствующих изменений применяется в определении причинности в явлениях общественной жизни. Когда мы, например, находим, что количество преступлений уменьшается вместе с распространением народного образования, то мы предполагаем, что эти явления находятся в причинной связи друг с другом.

XXI. РОЛЬ ДЕДУКЦИЙ

Для открытия законов природы необходимо пользоваться индуктивными методами исследования, как это мы видели в предыдущей главе. Но открытию законов способствует не только индукция, а равным образом и дедукция.

Дедуктивный метод исследования может употребляться в науках в двух случаях. Во-первых, он употребляется как средство объяснения закона, уже открытого индуктивно, именно когда найденный закон можно свести к одному или нескольким законам более общего характера, которые поэтому можно назвать высшими законами. Во-вторых, дедуктивный метод употребляется как средство открытия законов, которые невозможно открыть индуктивно, но которые возможно дедуктивно вывести из законов, уже известных.

Дедуктивное объяснение законов. Рассмотрим предварительно роль дедукции в объяснении законов.

Но что значит в этом случае термин объяснение, что значит объяснить закон? В этом случае понятие объяснения употребляется в том же самом смысле, в каком оно употребляется, когда дело идёт об объяснении факта. Мы считаем известный факт объяснённым в том случае, если его можно вывести из какого-нибудь общего закона. Например, человек умер вследствие введения какого-то вещества в желудок. Мы спрашиваем, почему произошла смерть; как объясняется данный факт (т. е. смерть человека)? Данный факт будет объяснён, если, констатируя, что вещество, введённое в желудок, имеет все признаки мышьяка, мы можем вывести этот факт из общего положения «мышьяк есть яд». Процесс дедукции, применяемый нами в данном случае, вполне очевиден.

Подобно тому как факты могут быть объясняемы дедуктивно, так могут быть объясняемы и законы. Мы отмечаем следующее различие между законами. Поскольку закон, найденный индуктивно, не может посредством дедукции выводиться из какого-либо другого более общего или высшего закона, он называется эмпирическим законом. (Это, как мы видели, есть индукция через простое перечисление.) Например, из многочисленных наблюдений над влиянием хинина на организм был сделан индуктивный вывод, что «хинин излечивает лихорадку»; это есть индуктивный закон, но в то же время это есть эмпирический закон, потому что не объясняется, почему хинин излечивает лихорадку. Если мы дадим ответ на последний вопрос, то мы объясним эмпирический закон; тогда эмпирический закон перестанет быть эмпирическим и сделается производным. Объяснение эмпирического закона состоит в сведении его на более общий закон. Таких объяснений эмпирических законов в науках о природе Милль различает три вида.

Первый вид. Мы иногда открываем законы какого-нибудь явления при помощи индукции и затем приходим к убеждению, что этот закон выводится из других законов. Так, например, Кеплер открыл закон, что «планеты движутся по эллипсу», но объяснить, отчего это так, он не был в состоянии. Ньютон показал, что этот закон может быть объяснён двумя более общими законами, именно законом центробежной силы, стремящейся двигать планету по касательной к её орбите, и законом тяготения, которое стремится бросить планету на Солнце. Легко видеть, что оба эти закона имеют более общий характер, чем закон движения планет.

Второй вид. Мы часто открываем причинную связь между явлениями А и D; нам кажется, что А и D связаны друг с другом непосредственно. Между тем впоследствии мы убеждаемся в том, что между указанными двумя членами есть промежуточный член или несколько таковых. Например, между А и С, на которые мы смотрели как на причину и действие, есть промежуточный член В, так что отношение между А и С оказывается не одним законом причинности, а цепью таких законов, в которой А есть причина В и только В есть причина С. Например, прикосновение сахара к языку вызывает ощущение сладкого вкуса. Поэтому можно сказать, что сахар есть причина ощущения сладкого вкуса. Но между прикосновением сахара к языку

Рис. 30.

Что движение планеты, например Луны, находится под влиянием двух сил, можно пояснить при помощи чертежа 30, «где Е представляет Землю, а МВА--орбиту Луны. Предположим, что Луна находится в М. Если бы притяжение Земли перестало действовать на неё, то Луна продолжала бы двигаться по той же прямой линии, по которой она двигалась в тот самый момент, как притяжение перестало действовать на неё, и она пошла бы по направлению к N л в течение секунды дошла бы, положим, до М. Но мы находим, что вследствие притяжения Земли Луна на самом деле находится в B, и это показывает, что притяжение Земли притянуло Луну от M до В» (Локайер, Уроки элементарной астрономии).

возникновением сладкого вкуса есть целый ряд звеньев. Сахар поглощается слизистой оболочкой языка и приходит в соприкосновение с волокнами вкусовых нервов; из этого возникает химический процесс в нерве, который, распространяясь по нерву в форме молекулярного движения, доходит до головного мозга, результатом возбуждения которого является то состояние, которое называется ощущением сладкого вкуса. Таким образом, между прикосновением сахара к языку и ощущением сладкого вкуса происходит целый ряд процессов. Общие положения, которые служат для выражения этих промежуточных процессов, и служат для объяснения закона причинной связи между Л и С.

Может казаться, что этот второй вид объяснения не содержит в себе никакой дедукции, никакого подведения под другой, более общий закон. На самом же деле такое подведение действительно существует, потому что законы промежуточных процессов оказываются более общими, чем первоначальное положение. В самом деле, если мы говорим, что сахар поглощается слизистой оболочкой языка, то потому, что мы здесь предполагаем общее положение, что слизистые оболочки вообще обладают способностью поглощать различные вещества. Далее, гели мы говорим, что во вкусовом нерве происходит химический процесс, который распространяется по нерву в форме молекулярного движения, то мы этот процесс рассматриваем как частный случай молекулярного движения в случае возникновения химического процесса. Наконец, когда мы говорим, что возбуждение мозга вызывает ощущение сладкого вкуса, то это есть частный случай более общего процесса, когда возбуждение мозга вызывает те или иные психические процессы.

Таким образом, объяснение в этом случае заключается в том, что между двумя данными членами причинной связи вставляются промежуточные процессы, которые могут быть объяснены законами более общего характера.

Третий вид. Наконец, третий вид объяснения законов состоит в соединении нескольких законов в один закон, объединяющий их. Этот вид объяснения представляет простой процесс обобщения. Например, мы называем известный процесс горением. Но если мы между горением и покрытием железа ржавчиной усматриваем нечто общее, именно: что горение и покрытие ржавчиной представляют собой процессы соединения с кислородом, то мы подводим их под высшее понятие, их объединяющее, именно «окисление». Это более общее понятие и служит объяснением для менее общих понятий.

Значение объяснения законов. Таким образом, рассмотрев три вида объяснения законов, мы видим, что объяснение какого-нибудь закона заключается в сведении его к законам более общим. Это объяснение законов, или превращение эмпирических законов в производные, имеет громадное научное значение.

Наука делает каждый раз шаг вперёд, когда эмпирический закон делается производным посредством Дедукций, потому что объяснение эмпирического закона точно определяет сферу приложения его. Эмпирические законы не должны быть прилагаемы за пределами времени, места и вообще обстоятельств, при которых они найдены, т. е. если мы нашли какой-нибудь закон при тех или иных обстоятельствах времени и места, то мы не имеем права утверждать, что он будет действителен и при других обстоятельствах времени и места, потому что мы вообще не знаем, в каких пределах он может быть приложим. Если же эмпирический закон сделается производным, то он тогда точно указывает, в каких пределах он может быть приложим. Чтобы показать, как важно превращение эмпирических законов в производные, возьмём пример.

Эмпирическим путём было найдено, что вода в насосе не может подняться выше 33 футов. Это был факт, но факт необъяснённый. Вследствие этого нельзя было сказать, так ли это происходит на других планетах, так ли это происходит на высоких горах и т. п. Но вот закон из эмпирического сделался производным, потому что было найдено, что поднятие воды в насосе обусловливается давлением атмосферы. Эмпирический закон был объяснён. Как только это произошло, тотчас можно было определить точные границы приложимости этого эмпирического закона. Мы теперь знаем, где этот закон не будет иметь применения. Мы знаем, что на вершинах высоких гор высота поднятия воды в насосе должна быть ниже 33 футов, что другие жидкости, как, например, ртуть, серная кислота и т. п., не поднимутся до этой высоты. Ни одно из этих ограничений не могло бы быть получено эмпирическим путём. Превращение эмпирического закона в производный дало тотчас же все эти ограничения.

Дедуктивное открытие законов. Дедуктивное открытие законов бывает тогда, когда действие одной причины смешивается с действием другой (например, на какое-либо тело действуют две силы под углом; требуется определить путь, который совершит данное тело). В этом случае необходимо бывает определить, какое может получаться действие от комбинации данных причин.

В применении этого метода можно отличать три момента.

Первый момент -- это нахождение простейших законов отдельных причин при помощи индукции. Именно при помощи индукции определяются законы отдельных причин, которые, входя в соединение друг с другом, производят известное действие.

Второй момент составляет силлогизация, т. е. выведение из уже известных законов отдельных причин того сочетания их действий, какое нужно для того, чтобы создать исследуемое сложное явление. Дедукция в собственном смысле состоит в определении по законам отдельных причин, каково будет действие, производимое сочетанием этих причин.

Третью часть составляет проверка вычисления, или вывода, посредством сравнения результатов вычисления с наблюдением над изучаемым сложным явлением. Это есть сопоставление действия предсказанного и действия данного.

Для того чтобы пояснить применение дедуктивного метода для открытия законов природы, возьмём в пример задачу: определить, какой путь совершит ядро при полёте его из дула пушки.

При помощи индуктивных исследований мы знаем упругость газов, развивающихся в дуле пушки; индуктивным же путём мы знаем, как велико сопротивление воздуха и, равным образом, какое влияние оказывает земное притяжение.

Имея эти данные, мы пользуемся уже дедуктивным методом для решения нашей задачи. При помощи силлогизации мы определяем, как должно быть велико сопротивление для данного случая (для этого нам необходимо общее положение и данный частный случай). Путём силлогизации мы определяем, какова была бы линия полёта, если бы действовала только одна упругость газов. Приняв в соображение эти и другие данные, мы определяем линию полёта.

Затем нам необходимо ещё произвести проверку. Для этого мы выпускаем ядро из орудия и таким путём проверяем, было ли правильно наше умозаключение.

Таким образом,, при помощи силлогизации мы в состоянии определить, какое действие будет следовать за данным сочетанием причин.

Из изложенного ясно, что дедукция имеет очень важное значение для раскрытия законов природы. Поэтому не следует думать, как это делают некоторые, что только индукция служит для открытия законов природы.

Из изложенного в этой главе легко видеть, что именно соединение дедукции с индукцией даёт возможность открыть законы сложных явлений. «Дедуктивному методу, характеризованному указанным способом, с его тремя составными частями: индукцией, рассуждением и проверкой,--говорит Милль, -- человеческий ум обязан своими наиболее блестящими победами в исследовании природы. Мы обязаны ему всеми теориями, подводящими обширные и сложные явления под несколько простых законов, которые никогда не могли бы быть открыты прямо».

Вопросы для повторения

В каких двух случаях употребляется дедуктивный метод? В чём заключается дедуктивное объяснение законов? Какое различие между законами эмпирическими и производными? Какие существуют три *вида дедуктивного объяснения законов? Какое имеет значение .сведение эмпирического закона к производному? В чём заключается дедуктивное открытие законов природы?

XXII. О ГИПОТЕЗЕ

Роль гипотез в науке. Некоторые учёные утверждали, что науки строятся исключительно благодаря собиранию фактов; по их мнению, о науке факты и опыты есть всё; истинный учёный должен ограничиться только регистрированием фактов, т. е. простым описанием фактов, событий, явлений. Но на самом деле это мнение совершенно неправильно. Ведь, для того чтобы собирать факты и материалы для науки, мы должны руководиться известной мыслью, известным планом: для того чтобы приступить к совершению того или иного эксперимента, у нас должно быть известное соображение или рассуждение, почему мы должны произвести именно этот, а не какой-нибудь другой эксперимент. Если бы мы стали производить эксперименты наудачу, то это не привело бы ни к каким благоприятным результатам. Этим, по справедливому замечанию Джевонса, можно объяснить «весьма малые приращения, сделанные к нашему знанию алхимиками. Многие из них были люди очень проницательные и неутомимые; труды подобных лиц длились несколько столетий, они открыли немногое; а верный взгляд на природу даёт современным химикам возможность открыть в течение года больше полезных фактов, чем сколько их было открыто алхимиками в течение многих столетий». Следовательно, не из собирания фактов наудачу создаётся наука, а из собирания, руководимого известным планом: учёный, приступающий к какому-нибудь исследованию, всегда должен приступать к нему с определённым планом. Для того чтобы иметь план, необходимо построить гипотезу.

Но что такое гипотеза?

Определение гипотезы. Гипотезой называется предположение, которое мы считаем истинным, для того чтобы вывести из него следствия, согласные с действительными фактами или с другими проверенными положениями. Это согласие с фактами или с проверенными положениями служит доказательством гипотезы.

Когда мы прибегаем к гипотезе? Когда у нас есть ряд фактов, которые не объяснены именно потому, что в непосредственном опыте имеется недостаточно данных. В таком случае нам приходится дополнять данные опыта при помощи того, что не дано прямо в опыте. Это дополнение мы производим при помощи предположения, или гипотезы.

Процесс построения гипотезы во многих отношениях сходен с рассмотренным нами дедуктивным методом открытия законов. Разница между ними следующая. В процессе построения гипотезы отсутствует первая часть дедуктивного метода, именно отсутствует индукция, при помощи которой устанавливается закон, но гипотетический метод вполне тождествен с дедуктивным в том отношении, что пользуется приёмом силлогизации и проверки. Закон же, из которого делается вывод, вместо того чтобы доказываться, как это мы имеем в дедуктивном методе, просто принимается за истинное. Очевидно, что гипотеза может считаться истинной только в том случае, если она приводит к истинным результатам.

Итак, в процессе построения гипотезы мы Можем различать три стадии:

1. Мы делаем известное предположение.

2. Из этого предположения мы выводим следствия один или несколько

3. Смотрим, соответствуют ли эти следствия действительности или другим доказанным положениям.

Рассмотрим гипотезу всеобщего тяготений, чтобы дать представление о том, как гипотеза может проверяться своими собственными следствиями и реальными фактами. Как известно, согласно гипотезе тяготения, «все тела притягиваются друг к другу с силой, зависящею от их масс и от расстояния между ними». Согласно этой гипотезе все тела падают на землю; равным образом все небесные светила притягиваются друг к другу. Посмотрим, как доказывается эта гипотеза.

Рассмотрим первое следствие этой гипотезы -- именно падение тел на землю. Невидимому, нет ничего проще того положения, что вообще все тела падают на землю, однако, например, грекам это положение не казалось верным, потому что они имели случай наблюдать, что пламя, дым, водяные пары поднимаются кверху. На этом основании Аристотель и другие греческие философы предполагали, что некоторые вещи по природе своей тяжелы и стремятся книзу, тогда как другие вещи от природы легки и стремятся кверху. Но Ньютон показал, что это предположение неверно, что нет тел лёгких и тяжёлых по природе, что все тела, и в том числе так называемые лёгкие, стремятся падать на землю: пар, дым хотя и поднимаются вверх, однако вполне подчиняются закону тяготения. Чтобы это было понятно, обратим внимание на следующее. Если мы положим на одну чашку весов фунтовую гирю, а на другую чашку полуфунтовую, то последняя, поднимается кверху. Из того, что полуфунтовая гиря поднимается кверху, не следует, что она не подчиняется закону тяготения. Если, далее, мы погрузим в сосуд с водой кусок железа, то он, погружаясь в воду, заставит подняться часть жидкости вверх. Если мы погрузим в воду пробку, то пробка будет стремиться падать вниз, но, подобно только что упомянутой чашке весов, она будет поднята кверху. Из этого не следует, что пробка не стремится вниз; она только выталкивается вверх другим телом, которое стремится вниз с большей силой. Из этих примеров становится ясным, что пламя, пар и т. п. точно так же поднимаются, будучи легче окружающего воздуха. Поэтому Аристотель был не прав, предполагая, что есть тела, которые по своей природе стремятся вверх. На самом деле и эти тела стремятся к земле. Таким образом, если мы предположим, что все тела притягивают друг друга, то из этого предположения должно следовать, что все тела должны падать на землю, и действительно, этот вывод из допущенного предположения согласуется с фактами: все тела стремятся падать на землю.

Рассмотрим второе следствие. Если все тела притягиваются друг другом, то все тела должны притягиваться к Земле. Луна есть тело, и она должна притягиваться к Земле, т. е. падать на Землю. Отчего, же Луна не падает на Землю, а продолжает вращаться вокруг неё? По теории Ньютона, Луна действительно стремится упасть на Землю, потому что если бы этого не было, то она должна была бы полететь благодаря центробежной силе по линии, касательной к орбите. Ньютон при помощи вычисления показал, что если сила тяготения такова, какой он её считает, то Луна должна совершать путь около Земли как раз именно тот, который она в действительности совершает. Он показал также, что планеты должны вращаться около Солнца так, как они это делают.

Мы вывели два следствия из гипотезы всеобщего тяготения (падение тел, движение тел), и оказалось, что оба эти следствия соответствуют действительности. Эта гипотеза, следовательно, совершенно согласна с фактами; она объясняет эти последние, а следовательно, доказывается этими последними.

Experimentum crucis. Иногда случается, что две или даже три совершенно различные гипотезы кажутся согласными с известными фактами, так что мы затрудняемся относительно того, которую из них следует считать истинной. Тогда наша задача сводится к тому, чтобы отыскать такой факт, который находился бы в согласии с одной гипотезой и противоречил бы другой. Нахождение такого факта называется experimentum crucis.

Для объяснения движения планет солнечной системы Декарт предполагал, что существует вихрь, который увлекает все планеты вокруг Солнца в одном направлении. Для пояснения этого возьмём стакан с водой, в котором плавают частички пробки, и затем произведём в нём движение, например, помешаем ложкой; тогда в стакане образуется водоворот, и в этом водовороте частички воды и пробки будут двигаться в одном направлении.

Таким же образом, по Декарту, плавают и планеты в мировом пространстве, так как они, будучи раз приведены в движение, движутся в одном и том же направлении. Но ньютоновская гипотеза тяготения объясняла иначе те же самые факты, и было трудно решить, которая из двух гипотез правильнее. Поэтому необходимо было открыть какой-нибудь такой факт, который согласовался бы с одной гипотезой и находился бы в противоречии с другой. Такой факт оказался. Именно Ньютон показал, что движение комет не находится в согласии с теорией Декарта. Кометы движутся не в том направлении, в каком движутся планеты, а проходят через весь круговорот Солнца (рис. 31). Если бы правильна была гипотеза Декарта, то кометы должны были бы, увлекаемые общим вихрем, двигаться в том же направлении, в каком двигались планеты. Этим фактом опровергалась гипотеза Декарта. Но с гипотезой тяготения движение комет находилось в полном согласии.

Рис. 31.

Мы рассмотрели, таким образом, научное значение гипотезы: мы видели, что гипотеза приемлема только а том случае, если выводы из неё находятся в согласии с фактами. Но следует заметить, что гипотеза обладает всегда только лишь большей или меньшей степенью вероятности. Вероятность гипотезы может превратиться в достоверность, когда удаётся доказать, что данная гипотеза является единственным объяснением какого-либо явления, или если выводы из неё согласуются с другими признанными положениями, т. е. с положениями, которые уже доказаны. О такой гипотезе можно сказать, что она проверена, доказана; доказанная же гипотеза называется теорией. Гипотетический метод употребляется как в науках о природе, так и в науках об обществе (в истории, истории культуры, лингвистике и в истории литературы). Например гипотеза о происхождении того или другого народа (о происхождении варягов) , гипотеза о принадлежности сочинения тому или другому автору. Гипотеза употребляется также в судебных разбирательствах. На основании свидетельских показаний, которые имеют отрывочный характер, мы при помощи различных дополнений строим известную картину происшествия. Затем смотрим, оправдывается ли наше предположение теми или другими данными.

XXIII. КЛАССИФИКАЦИЯ

Определение классификации. В этом разделе мы рассмотрим процесс классификации, потому что он служит вспомогательным средством для индукции; с другой стороны, как мы сейчас увидим, классификация возможна только благодаря индукции. Классификацией мы называем распределение вещей по классам согласно сходству между ними. Так, например, мы можем отнести зарево, кровь, вишни в один класс, потому что все они при всём различии имеют то общее, что они суть красного цвета. Классификация вещей, или распределение их по классам, преследует свои определённые задачи, которые можно формулировать так:

задача классификации заключается в том, чтобы распределить вещи по группам в таком порядке, который наиболее полезен для припоминания вещей и для определения свойств их.

Первое требование хорошей классификации заключается в том, чтобы пункты сходства, на основании которых мы составляем классы, были важны в практическом отношении.

Второе требование хорошей классификации состоит в том, чтобы она давала нам возможность сделать наибольшее число утверждений. Та классификация наилучшая, в которой предметы сходны друг с другом в возможно большем числе признаков.

Из этого становится ясной связь классификации с индукцией. Именно классификация предполагает индукцию, потому что эта последняя определяет те общие признаки, которые дают возможность относить предметы в общий класс. Только что указанный признак классификации отличает естественную классификацию от искусственной. Чтобы понять это, возьмём пример какой-нибудь искусственной классификации. Мы можем распределить фамилии каких-либо авторов по первым буквам их фамилий. Это иногда очень важно потому, что .мы можем в случае надобности отыскивать те или иные фамилии. Но такая классификация допускает чрезвычайно мало утверждений. В самом деле, что мы можем утверждать относительно того или иного автора только на том основании, что фамилия его начинается с буквы А или с буквы Б?.

Естественная классификация. Для того чтобы мы могли делать большое число утверждений, мы должны брать за основание классификации такие признаки, которые влекут за собой большое число других признаков. Это бывает в том случае, когда мы соединяем предметы в классы по признакам существенным, выражающим природу вещей. Если мы имеем такую классификацию, то для нас вполне достаточно знать название класса, чтобы судить о свойствах вещей, принадлежащих к этому классу.

Возьмём пример для пояснения этого. Рожь, ячмень, овёс и другие сорта растений относятся к семейству злаков. Всякий, кто знаком с ботаникой, легко может определить, принадлежит ли данное растение к злакам или нет. В пищу как людям, так и животным главным образом идёт какой-нибудь род злаков, и поэтому следует предположить, что ни одно из растений, принадлежащих к этому семейству, не ядовито. Предположим, что путешественник попал в какую-нибудь необитаемую страну и нуждается в пище. Если он увидит какой-либо злак, он станет питаться его семенами, так как ему известно, что злаки не ядовиты. Следовательно, по принадлежности известного растения к известному классу можно умозаключать о ядовитости или неядовитости его.

Таким образом, естественная классификация имеет в виду раскрыть истинные свойства вещей и основывается вследствие этого на признаках важных и существенных. Так, людей можно классифицировать по религии, речи, государственному устройству и т. п. Если бы мы стали делить людей на классы, смотря по тому, как они изготовляют пищу или как они одеваются, то это было бы искусственной классификацией.

Искусственная классификация. Искусственная классификация кладёт в основу классификации какие-либо произвольные признаки. Так, например, известная Линнеевская система классификации растений может служить примером искусственной классификации. Шведский ботаник Линней разделил все растительное царство на 24 класса на основании числа тычинок, их прикрепления, срастания между собой и т. п. В искусственной классификации вследствие того, что она имеет в своей основе более или менее случайный признак, всегда возможно, что совершенно несходные предметы могут очутиться в одной группе, между тем как очень родственные предметы могут очутиться в очень отдалённых группах. В Линнеевской классификации очень родственные группы растений, например злаки, относятся в различные, очень несходные классы, между тем как очень несходные, например дуб и один вид осоки, соединяются в один класс. Это происходит вследствие того, что в основе этой классификации лежит только такой признак, как строение цветка. Этого не может быть в естественной классификации, в которой для выяснения родства между растительными формами обращают внимание на всю совокупность признаков, свойственных изучаемым организмам. Другой пример. Семейство губоцветных характеризуется четырёхгранным стеблем, супротивными листьями, двугубым зевообразным венчиком и четырьмя тычинками. Но есть растение (шалфей), которому присущи все указанные черты, но в котором всего две тычинки. Вследствие этого его приходится отнести в другое семейство, если пользоваться искусственной классификацией, хотя родство его с губоцветными не подвергается никакому сомнению.

В связи с классификацией следует упомянуть о научной номенклатуре и научной терминологии.

Номенклатура. Номенклатура самым теснейшим образом связана с классификацией. Группы естественные или искусственные, на которые распределяются предметы, не могут быть нами запоминаемы, не могут быть сообщаемы другим, если только эти группы не фиксируются определёнными названиями. Для этого именно существует номенклатура. Номенклатура может быть определена как собрание названий всех реальных родов, классов, например в ботанике, зоологии, химии и т. п. В минералогии названия отдельных минералов, каковы, например, гематит, топаз, амфибоз, составляют номенклатуру. В химии мы имеем названия, например, для органических соединений: этил, ацетил, бензол и т. п. Число естественных групп в природе настолько велико, что почти невозможно запомнить имена отдельных групп. Так, известные науке виды растений значительно превосходят 60 тысяч, но если мы примем в соображение разновидности и подразновидности, то число групп будет значительно больше. Поэтому только при помощи названий и возможно оперировать с таким огромным числом предметов. Мы можем не помнить подгруппы, но если мы помним группу, то этого вполне достаточно для оперирования с ними. В пример можно привести номенклатуру, введённую Линнеем в ботанику. Эта номенклатура была в состоянии обозначить около 10 тысяч видов растений 1 700 родовыми названиями, которым придавались видовые признаки. Так, например, в ботанике каждое растение обозначается двойным названием: одно из них есть родовое, т. е. Указывает род, другое видовое. Например, в названии Betula alba--Betula есть название всего рода берёз, alba есть название вида. Может быть десять видов герани; эти виды каждый в отдельности нам нет надобности запоминать, достаточно помнить только род. Всякая хорошая номенклатура предполагает хорошую систему классификации. Только те науки, которые имеют полную классификацию, имеют и выработанную номенклатуру, например ботаника и химия.

Терминология. Терминология есть совокупность названий или терминов, которые отличают те или другие свойства или части индивидуальных предметов, рассматриваемых наукой. Различие между номенклатурой и терминологией сводится к следующему. Если мы говорим о роде «роза», то мы употребляем номенклатуру ботаники, если же мы говорим о свойствах индивидуума вида «роза», то мы употребляем не номенклатуру, а терминологию. Термины дают нам возможность описывать индивидуальные предметы. «Описательная терминология, -- по Юэллю, -- должна заключать в себе все термины, необходимые для того, чтобы точно описывать всё то, что было наблюдаемо относительно какого-либо предмета или явления, для того чтобы мы могли постоянно вспоминать о наблюдённом. Для каждого качества, формы, обстоятельства, степени или количества должно быть подходящее название или способ выражения. Так, вспоминая открытие нового минерала, мы должны быть в состоянии фиксировать при помощи слова самым точным образом его кристаллическую форму, его цвет, степень его твёрдости, удельный вес, запах, вкус и т. п. В ботанике, когда мы описываем листья того или другого растения, мы употребляем термины: «округлые», «овальные», «эллиптические», «продолговатые», «яйцевидные», «ланцетные», «линейные», «сердцевидные», «почковидные», «стреловидные», «копьевидные» листья и т. п.

Совершенная терминология должна быть построена таким образом, чтобы выражать каждый оттенок в описании тех или иных свойств. Прогресс наук задерживался вследствие того, что термины употреблялись без достаточной точности, например, в физике употреблялись неточно такие термины, как сила, притяжение и т. п.».

Вопросы для повторения

Что такое классификация и какие она преследует цели? Какие требования хорошей классификации? Какое отличие естественной классификации от искусственной? Что такое номенклатура и каково значение её? Что такое терминология и чем она отличается от номенклатуры?

XXIV. О ПРИБЛИЗИТЕЛЬНЫХ ОБОБЩЕНИЯХ И ОБ АНАЛОГИИ

Индуктивный метод исследования является главным методом для открытия законов природы, но, как мы видели, им не всегда можно пользоваться: иногда приходится для той же цели пользоваться дедукцией, гипотезой; иногда приходится пользоваться также так называемыми приблизительными обобщениями и методом аналогии.

Приблизительные обобщения. Приблизительные обобщения суть умозаключения или утверждения, справедливые относительно большинства вещей данного класса. Приблизительные обобщения выражаются при помощи суждений, содержащих утверждение или отрицание относительно большинства вещей известного класса, так что формулой приблизительных

обобщений будет:

Большинство S суть Р.

Слово «большинство» в приблизительных обобщениях может заменяться также словами «большей частью», «обыкновенно», «вообще» и т. д. Если я, скажу: «люди образованные в большинстве случаев менее склонны к пороку, чем люди необразованные», .кто я этим хочу сказать, что это справедливо только относительно большинства образованных людей, а не относительно всех. Приблизительные обобщения употребляются во всех тех случаях, когда мы не имеем возможности точно определить причинную связь явлений. Они употребляются, например, в медицине. Взгляд на действие тех или других лекарственных веществ на организм выражается при помощи положений, имеющих характер приблизительных обобщений. Если мы говорим, что «бром успокаивает нервы», то это справедливо только относительно большинства людей, а не относительно всех. Наши взгляды на значение общественных мероприятий также выражаются при помощи приблизительных обобщений. Например, когда мы говорим, что те или другие учреждения имеют воспитательное значение для людей, то мы имеем в виду только большинство людей, а не всех. Точно так же наши суждения о характере народов представляют собой приблизительные обобщения, например, когда мы говорим, что англичане предприимчивы, французы легко возбудимы.

Значительная часть науки состоит из приблизительных обобщений, и в практической жизни мы поставлены в необходимость пользоваться приблизительными обобщениями. Это происходит потому, что явления жизни слишком сложны для того, чтобы мы могли найти какие-нибудь точные законы, а поэтому нам приходится довольствоваться приблизительными обобщениями.

Но приблизительные обобщения тем не менее бесспорно имеют научное значение. При научных исследованиях, относящихся к свойствам не отдельных индивидуумов, но к массам индивидуумов, как это мы имеем, например, в политических и социальных науках, мы можем пользоваться приблизительными обобщениями так, как если бы это были обобщения, имеющие всеобщий характер. В самом деле, для государственного человека вполне достаточно знать, что «большинство», людей действует таким-то и таким-то образом, так как для его деятельности является важным то, как действует и чувствует большинство. Например, Кобдэн, проводя свой закон о хлебных пошлинах, знал, что этот закон разорит меньшинство (богатых землевладельцев), зато поднимет экономическое благосостояние масс, а этого было вполне достаточно, чтобы провести реформу.

Эти соображения опровергают мнение, что выводы политических и социальных наук, как не вполне якобы достоверные, Не имеют научного значения.

Вычисление вероятности. Говоря о вероятности приблизительных обобщений в отличие от достоверности индуктивных умозаключений, мы рассмотрим в связи с этим, что называется вероятностью и достоверностью наступления какого-либо события.

Для того чтобы показать, каким образом определяется степень вероятности наступления какого-либо события, возьмём пример. Положим, перед нами находится ящик с белыми и чёрными шарами, и мы опускаем руку, чтобы вынуть оттуда какой-либо шар. Спрашивается, какова степень вероятности того, что мы вынем белый шар. Для того чтобы определить это, мы сосчитаем число шаров белых и чёрных. Предположим, что число белых шаров будет 3, а число чёрных, тогда вероятность, что мы вынем белый шар, будет равна 3/4, т. е. из 4 случаев мы имеем право рассчитывать на три благоприятных и один неблагоприятный. Вероятность, с какой вынется чёрный шар, будет выражаться 'А, т. е. из четырёх случаев можно рассчитывать на один благоприятный. Если в ящике находятся четыре белых шара, то вероятность, что будет вынут белый шар, будет выражаться числом V4==l. Степень вероятности, выражаемая 1, есть достоверность. В самом деле, из ящика, в котором находятся только белые шары, мы наверное вынем белый шар.

Если же мы не имеем возможности определять отношения благоприятных и неблагоприятных случаев, тогда для определения степени вероятности наступления данного события следует определить максимум и минимум повторения разбираемого случая. Средняя величина повторений укажет среднюю вероятность. Таким способом статистика определяет степень вероятности смерти для человека известного возраста в известной местности. Па этом вычислении, как известно, основываются мероприятия по страхованию жизни.

Аналогия. Перейдём к рассмотрению умозаключения по аналогии и его отношения к индукции. Как мы видели, индукцией называется умозаключение от частных положений к общему. Аналогией мы называем умозаключение, в котором от сходства двух вещей в известном числе свойств мы заключаем к сходству в других свойствах. Из сходства в одной части признаков мы умозаключаем к существованию сходства в другой части признаков. Например, Марс похож на Землю в части своих свойств. Именно, Марс обладает атмосферой с облаками и туманами, совершенно похожими на наши. Марс имеет моря, отличающиеся от суши зеленоватым цветом, и полярные страны, покрытые снегом. Отсюда мы заключаем, что Марс похож на Землю и в других свойствах, а именно, что он, подобно Земле, обитаем. Таким образом, населённость Марса есть умозаключение по аналогии.

Отсюда видно, что между индукцией и аналогией существует некоторое сходство.

И в индукции и в аналогии мы умозаключаем от частностей, по разница между ними та, что индукция приходит к общему, а умозаключение по аналогии приходит опять к частностям. Умозаключение по аналогии не обращается к какому-нибудь определённому общему закону. В умозаключении по аналогии мы умозаключаем не от ряда случаев, но от известного числа пунктов сходства.

Заключение по аналогии не может дать ничего, кроме вероятности. Степень вероятности умозаключения по аналогии зависит от трёх обстоятельств: 1) количества усматриваемых нами сходств, 2) количества известных несходств между ними и 3) объёма нашего знания сравниваемых вещей. Именно вероятность заключения по аналогии может считаться очень высокой, если число пунктов сходства между рассматриваемыми вещами очень велико и если в то же время число пунктов несходства незначительно, но при этом мы знаем, что число известных нам свойств изучаемой вещи достаточно велико. Чем больше число неизвестных свойств, тем меньше достоверность нашего вывода. Если мы находим, что В сходно с A в 9 из 10 известных свойств, то вероятность, что оно будет сходно и в других отношениях, равна 9: 10. Достоверность, присущая умозаключению по аналогии, таким образом, может иметь различные степени.

О научных достоинствах метода аналогии можно сделать следующее замечание. Иногда заключения, полученные посредством аналогии, так и остаются на степени только лишь вероятного предположения; иногда же они, делаясь основой для гипотез, получают своё оправдание в фактах и выводах, превращаются, следовательно, в научные теории. Поэтому легко видеть, что заключения по аналогии могут быть весьма ценными в научном отношении, так как они являются, так сказать, предварительными построениями, указывающими, куда должен направить своё внимание исследователь.

Вопросы для повторения

Что такое приблизительные обобщения и чем они отличаются от индукции? Как вычисляется вероятность? Что такое умозаключение по аналогии и чем оно отличается от индукции? От чего зависит степень вероятности умозаключения по аналогии?

XXV. О ДОКАЗАТЕЛЬСТВЕ, МЕТОДЕ И СИСТЕМЕ

Определение доказательства. Мы уже имели случай употреблять понятие доказательства в связи с понятием умозаключения. Теперь мы дадим его определение и укажем, какое существует различие между доказательством и умозаключением.

Мы видели, что суждения могут быть непосредственно очевидными, или они могут сделаться очевидными, если мы их сведём к положениям, которые имеют характер непосредственно очевидный. Если мы при помощи такого приема делаем суждения очевидными, то можно сказать, что мы их доказываем. Это приведение к очевидности облекается в силлогистическую форму, так что доказательство может быть определено как выведение какого-либо суждения из других суждений, признанных истинными и очевидными.

Таким образом, доказательство вообще имеет формулу силлогистического умозаключения, но есть существенные пункты отличия между умозаключением и доказательством.

Именно в умозаключении мы не всегда обращаем внимание на то, истинны ли посылки; в доказательстве же истинность посылок является самым главным требованием. Кроме того, доказательство отличается от силлогизма ещё и тем, что в нём доказываемое суждение, соответствующее заключению силлогизма, известно заранее.

Во всяком доказательстве мы различаем три части: 1) доказываемое положение, или тезис; это именно то, что должно быть доказано или сделано очевидным; 2) основы доказательства, или аргументы; это то, при помощи чего тезис доказывается или делается очевидным; 3) форма доказательства, или способ, каким тезис выводится из аргументов. Тезис доказательства соответствует заключению в силлогизме. Аргументы соответствуют посылкам силлогизма. Форма доказательства есть логическая схема, при помощи которой выводится заключение. Например, нужно доказать, что «железо плавко». Это есть тезис. Для доказательства нам необходимо воспользоваться следующими двумя аргументами; «все металлы плавки», «железо есть металл». Построив силлогизм, мы докажем наш тезис.

Основные принципы и аксиомы. Мы видим, таким образом, что Доказательство сводится к раскрытию очевидности данного суждения из очевидности других суждений, которые называются аргументами. А если эти последние не очевидны, то как поступить в таком случае? Нужно доказать их в свою очередь при помощи каких-либо других аргументов. Но так как эти последние также могут быть сомнительными, то доказательство большей частью представляет целую цепь умозаключений. В конце концов всякое доказательство должно приводить к таким положениям, которые имеют уже бесспорный или очевидный характер. Эти последние или суть аксиомы, или это суть общепризнанные общие положения, которые в таком случае называются основными принципами.

Прямое и косвенное доказательство. Процесс доказательства может быть прямой или косвенный. В прямом доказательстве мы выводим истинность тезиса из истинности аргументов при помощи умозаключения; непрямое, или апагогическое, доказательство выводит истинность тезиса из невозможности допустить или признать истинность положения, противоречащего тезису. Именно, в непрямом доказательстве мы берём положение, противоречащее тезису, и предполагаем его истинным (такое положение называется антитезисом). Затем из этого положения выводим следствия, которые приводят к противоречию с данными или признанными положениями. Вследствие этого нам приходится отвергнуть истинность противоречащего положения, которое мы предположительно допустили, а отсюда будет следовать истинность тезиса. Таким образом доказывается тезис.

Возьмём пример из математики. Требуется доказать, что в треугольнике, в котором два угла равны, противолежащие им стороны также равны. Пусть в треугольнике АВС угол а равняется углу b, и пусть противолежащие им стороны будут АС и ВС. Нам нужно доказать, что АС == ВС. Это есть тезис. Возьмём положение, противоречащее тезису: «АС не равняется ВС». Это будет антитезис; тогда из этого последнего положения (согласно теореме, что во всяком треугольнике против большего угла лежит большая сторона) будет следовать, что угол а должен быть или больше, или меньше угла b. Но так как этот, вывод противоречит принятому нами положению, то антитезис, является ложным; тогда истинным должно быть положение, противоречащее ему, именно тезис. Такого рода доказательство называется также reductio ad impossibile или reductio adabsurdum.


Подобные документы

  • Анализ закона формальной логики о зависимости между изменениями объёма и содержания понятия. Сущность правила логической операции деления понятий и возможные ошибки. Суждения как форма мысли, устанавливающая логическую связь между двумя и более понятиями.

    контрольная работа [21,6 K], добавлен 24.03.2015

  • Простой категорический силлогизм, его структура и правила. Фигуры и модусы простого категорического силлогизма. Логические отношения. Операции деления и расчленения. Отношения между понятиями. Атрибутивные, релятивные, экзистенциальные суждения.

    контрольная работа [21,3 K], добавлен 10.01.2009

  • Исследование периодизации развития схоластической логики. Методы логики византийского богослова и философа И. Дамаскина. Характеристика суждения и категорического силлогизма в труде "Диалектика". Разделение родов на виды. Теория двойственной истины.

    презентация [1,7 M], добавлен 27.01.2015

  • Учение о силлогизме как исторически первый законченный фрагмент логической теории умозаключений. Логика высказываний и категорические высказывания. Взаимная зависимость предложений. Фигуры и модусы силлогизма. Отношения между терминами рассуждения.

    контрольная работа [53,4 K], добавлен 07.01.2011

  • Характеристика типов высказываний по их модальности. Общие отношения между высказываниями. Простой категорический силлогизм. Правила силлогизма. Фигуры и модусы силлогизма. Основные различия между традиционным и аристотелевским силлогизмом.

    курсовая работа [52,4 K], добавлен 19.05.2007

  • С чего началась наука логика. Формирование логики как самостоятельной науки. Внутренняя структура человеческого мышления. Законы и правила логики. Двухчленные и трехчленные суждения. Закон противоречия с логических позиций. Основные элементы силлогизма.

    контрольная работа [22,4 K], добавлен 26.03.2011

  • Определение видов отношений между понятиями и их графическое изображение с помощью круговых схем Эейлера. Определение правильности деления понятий. Определение вида сложного суждения, его составные части и логическая форма на языке логики высказываний.

    контрольная работа [379,6 K], добавлен 14.05.2013

  • Графическое изображение вида отношений между понятиями. Определение фигуры силлогизма и выполнение его полного разбора: указание заключения и посылки, среднего, меньшего и большего терминов. Проведение анализа корректности приведенных аргументов.

    контрольная работа [18,2 K], добавлен 22.04.2010

  • Предмет и значение логики. Четыре закона логики. Для чего журналисту нужна логика. Логическая форма, которая определяет круг объектов по схожим. Обобщение и ограничение понятий. Отношения между субъектом и предикатом в суждении. Индуктивное умозаключение.

    контрольная работа [28,5 K], добавлен 28.03.2009

  • Ощущение, восприятие и представление как формы чувственного познания. Особенности и законы абстрактного мышления, взаимосвязь его форм: понятия, суждения и умозаключения. Основные функции и состав языка, специфика языка логики. История логики как науки.

    контрольная работа [30,3 K], добавлен 14.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.