Философия и методология науки

Взаимосвязь науки и философии. Характеристика и развитие взглядов механицистов, позитивистов. "Коперниканский поворот" в философии. Философия как аналитическая деятельность. Функции и методики научного исследования. Социальные аспекты истории науки.

Рубрика Философия
Вид учебное пособие
Язык русский
Дата добавления 04.12.2010
Размер файла 135,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

"Под методом же я разумею достоверные и легкие правила, -- писал Р. Декарт, -- строго соблюдая которые человек никогда не примет ничего ложного за истинное и, не затрачивая напрасно никакого усилия ума, но постоянно шаг за шагом приумножая знание, придет к истинному познанию всего того, что он будет способен познать".

Как можно найти такой метод?

А для этого нужно прежде всего обратиться к самой науке и посмотреть, где ей удается успешно решать эту задачу. Очевидно, что этим требованиям отвечают только арифметика и геометрия, только они "остаются не тронутыми никаким пороком лжи и недостоверности".

Этим наукам удается добиться таких результатов потому, что они применяют единственно правильный, надежный метод познания. Все дело в том, что они опираются на интуицию и дедукцию.

Интуиция дает нам возможность усмотреть в реальности не вызывающие никаких сомнений простые истины.

"Таким образом каждый может усмотреть умом, что он существует, что он мыслит, что треугольник ограничен только тремя линиями, а шар -- единственной поверхностью и тому подобные вещи, которые гораздо более многочисленны, чем замечают большинство людей, так как они считают недостойным обращать ум на столь легкие вещи".

Применение же дедукции позволяет вывести из очевидных истин знания, которые уже не могут с непосредственной ясностью постигаться нашим умом, однако представляют в силу самого способа их получения вполне обоснованные и тем самым достоверные. Дедукция, проводящаяся по строгим правилам, не может приводить к заблуждениям.

Р. Декарт убежден в том, что таким же образом можно получать знание в любой области науки. "Эти два пути являются самыми верными путями к знанию, и ум не должен допускать их больше -- все другие надо отвергать как подозрительные и ведущие к заблуждениям".

Следуя этими путями, мы можем быть уверены, что придем к познанию вещей без заблуждений.

"Те длинные цепи выводов, сплошь простых и легких, которыми геометры обычно пользуются, чтобы дойти до своих наиболее трудных доказательств, дали мне возможность представить себе, что и все вещи, которые могут стать для людей предметом знания, находятся между собой в такой же последовательности. Таким образом, если воздерживаться от того, чтобы принимать за истинное что-либо, что таковым не является, и всегда соблюдать порядок, в каком следует выводить одно из другого, то не может существовать истин ни столь отдаленных, чтобы они были недостижимы, ни столь сокровенных, чтобы нельзя было их раскрыть".

Так обосновываются РДекартом исходные основания его учения о методе научного познания. Они дают ему возможность сформулировать уже универсальные правила для руководства ума в его поисках нового знания.

И вот наконец сами эти знаменитые правила.

Осознание масштабов свершенного, спокойствие и уверенность чувствуются в этих простых и ясных предписаниях.

"И подобно тому как обилие законов нередко дает повод к оправданию пороков и государство лучше управляется, если законов немного, но они строго соблюдаются, так и вместо большого числа правил, составляющих логику, я заключил, что было бы достаточно четырех следующих, лишь бы только я принял твердое решение постоянно соблюдать их без единого отступления.

Первое -- никогда не принимать за истинное ничего, что я не признал бы таким с очевидностью, т. е. тщательно избегать поспешности и предубеждения и включать в свои суждения только то, что представляется моему уму столь ясно и отчетливо, что никоим образом не сможет дать повод к сомнению.

Второе -- делить каждую из рассматриваемых мною трудностей на столько частей, сколько потребуется, чтобы лучше их разрешить.

Третье -- располагать свои мысли в определенном порядке, начиная с предметов простейших и легко познаваемых, и восходить мало-помалу, как по ступеням, до познания наиболее сложных, допуская существование порядка даже среди тех, которые в естественном ходе вещей не предшествуют друг другу. И последнее -- делать всюду перечни настолько полные и обзоры столь всеохватывающие, чтобы быть уверенным, что ничего не пропущено". Что может быть значительнее в науке, чем решение этой проблемы? Р. Декарт вполне осознает ее масштабы. Предложенная им система правил, как он считал, откроет невиданные возможности для развития науки. Как писал великий мыслитель, "если говорить откровенно, я убежден, что она превосходит любое другое знание, переданное нам людьми, так как она служит источником всех других знаний". И вместе с тем ведь это был Декарт, который удивительно сочетал в себе кристальную ясность ума, убежденность в возможности достижения истины с замечательной способностью не преклоняться ни перед чьим мнением и во всем сомневаться. И поэтому нас не должно удивлять и такое его высказывание: “Впрочем, возможно, что я ошибаюсь, и то, что принимаю за золото и алмаз, не более чем крупицы меди и стекла".

2. КРИТИЧЕСКИЕ АРГУМЕНТЫ

Индуктивистская модель научного познания была очень популярна в истории методологии науки. Когда ученые говорили, что нельзя познать действительность не наблюдая, не экспериментируя, когда они воевали против всяческих умозрении по отношению к действительности, когда они высказывались в том стиле, что факты -- это воздух ученого, в принципе они опирались на те идеи, которые выдвинул еще Бэкон довольно давно и в довольно систематической форме. Кажется вполне естественным, что научное познание действительности осуществляется только тогда, когда мы имеем возможность ее наблюдать, экспериментировать с ней, и в общем-то даже современному здравому смыслу соответствует такое представление о научном познании. В этих представлениях, несомненно, есть определенные основания. Однако такого рода модель в свете современных представлений оказывается совершенно несостоятельной, и ее несостоятельность обосновывается сейчас совершенно неоспоримыми аргументами, которые высказывались в разное время и в общем-то были систематизированы уже в XX в. Рассел в свое время так выразил свое недоверие к индуктивной модели научного познания. Он говорил, что верить в индуктивные обобщения -- это значит уподобляться курице, которая на каждый зов хозяйки выбегает ей навстречу в надежде на то, что ее покормят зерном. Однако рано или поздно дело оканчивается тем, что хозяйка сворачивает ей шею.

Но если говорить всерьез, то против универсальности индуктивных обобщений и их трактовки как фундамента для всего научного познания могут быть выдвинуты прежде всего следующие аргументы.

-- Индукция не может приводить к универсальным суждениям, в которых выражаются закономерности.

Конечно, в опыте можно зафиксировать какую-либо повторяемость. Однако никакой опыт не может гарантировать, что она сохранится за пределами непосредственно наблюдаемого.

-- Индуктивные обобщения находятся на уровне непосредственно-эмпирических обобщений, и они не могут осуществить скачок от эмпирии к теории.

Обосновывая это утверждение, трудно представить себе лучший способ аргументации, чем апелляция к авторитету великого Эйнштейна.

“В настоящее время известно, что наука не может вырасти на основе одного только опыта и что при построении науки мы вынуждены прибегать к свободно создаваемым понятиям, пригодность которых можно a posteriori проверить опытным путем. Эти обстоятельства ускользали от предыдущих поколений, которым казалось, что теорию можно построить чисто индуктивно, не прибегая к свободному, творческому созданию понятий. Чем примитивнее состояние науки, тем легче исследователю сохранять иллюзию по поводу того, что он будто бы является эмпириком. Еще в XIX в. многие верили, что ньютоновский принцип "hypotheses non fingo" должен служить фундаментом всякой здравой естественной науки.

В последнее время перестройка всей системы теоретической физики в целом привела к тому, что признание умозрительного характера науки стало всеобщим достоянием”.

-- Любые эмпирические исследования предполагают наличие оп ределенных теоретических установок, без которых они просто неосуществимы.

Дело в том, что никакого чистого опыта, т.е. такого опыта, который не определялся бы какими-то теоретическими представлениями, просто не существует. Без определенной теоретической установки не может возникнуть даже идеи эксперимента.

Вот что пишет по этому поводу К. Поппер. Представление о том, что наука развивается от наблюдений к теории, все еще довольно широко распространено. Однако "вера в то, что мы можем начать научное исследование, не имея чего-то похожего на теорию, является абсурдной". “Двадцать пять лет тому назад я пытался внушить эту мысль группе студентов-физиков в Вене, начав свою лекцию следующими словами: "Возьмите карандаш и бумагу, внимательно наблюдайте и описывайте ваши наблюдения'" Они спросили, конечно, что именно они должны наблюдать. Ясно, что простая инструкция "Наблюдайте'" -- является абсурдной... Наблюдение всегда носит избирательный характер. Нужно избрать объект, определенную задачу, иметь некоторый интерес, точку зрения, проблему. А описание наблюдения предполагает использование дескриптивного языка со словами, фиксирующими соответствующие свойства; такой язык предполагает сходство и классификацию, которые, в свою очередь, предполагают интерес, точку зрения, проблему”.

Замечательное описание эмпиризма, который лежит в основе индуктивной модели научного познания, дает Р. Якобсон.

Он приводит описание положения, в которое попал герой повести русского писателя В. Одоевского, наделенный магом способностью все видеть и все слышать. “"Все в природе разлагалось пред ним, но и ничто не соединялось в душе его", и звуки речи несчастный воспринимал как лавину артикуляторных движений и механических колебаний, лишенных смысла и цели”. "Нельзя было более точно предвидеть, -- замечает Р. Якобсон, -- и более проникновенно описать торжество слепого эмпиризма'"

-Известно, что в истории науки целый ряд фундаментальных теоретических результатов был получен без непосредственного обращения к эмпирическому материалу.

В качестве классического примера здесь следует привести создание общей теории относительности. Впрочем, к ним можно отнести и создание частной теории относительности.

Никаких особых фактов, которые могли бы послужить Эйнштейну для создания общей теории относительности, не существовало. И по поводу создания частной теории относительности можно сейчас сказать то же самое. Опыт Майкельсона, на который обычно ссылаются, когда пытаются истолковать создание частной теории относительности как результат апелляции к каким-то опытным фактам, как свидетельствовал сам Эйнштейн, по крайней мере не имел для него существенного значения. Частная теория относительности была создана в результате рассмотрения теоретической проблемы, связанной с истолкованием природы пространства-времени и места пространственно-временных представлений в структуре научного знания, в физических теориях.

И уж, конечно, эти теории были созданы не в результате индуктивных обобщений.

Модель научного познания, разработанная Р. Декартом, оказывается также невыдерживающей критики

Конечно, в современном теоретическом мышлении огромна роль дедукции. Несомненно и то, что в каком-то смысле интуитивно ученый усматривает основные принципы теории

-- Однако эти принципы далеки от декартовской очевидности.

Как известно, Лобачевский построил неевклидову геометрию, заменив пятый постулат Евклида, согласно которому через точку, лежащую вне данной прямой, можно провести прямую параллельную данной, и притом только одну. В геометрии Лобачевского через точку, лежащую вне данной прямой, можно провести по крайней мере две прямые параллельные данной. Такое утверждение ни в каком смысле не является очевидным.

Аналогично дело обстоит с основаниями квантовой механики, теории относительности, современной космологической теории Большого взрыва.

-- Модель Р. Декарта не отражает роли эмпирических исследований в научном познании.

Теперь обратим внимание на их общие недостатки, которые присущи рассмотренным моделям научного познания.

-- Они предполагают, что в науке не может содержаться вероятностное знание.

Развитие науки убедительно продемонстрировало огромную эффективность использования в науке вероятностных представлений. Современные эмпирические исследования просто немыслимы без статистической обработки. Практически во всех областях науки строятся вероятностные модели изучаемых явлений. Подавляющее большинство современных научных теорий являются вероятностно-статистическими. Их значимость настолько велика, что сегодня говорят о вероятностной картине мира. Квантовая механика, генетика, теория эволюции, теория информации являются классическими образцами такого рода теорий.

-- Оба мыслителя исходят из того, что наука не может содержать в себе гипотетического знания.

Г. Лейбниц в отличие от Ф. Бэкона и Р. Декарта считал необходимым обратить особое внимание на гипотетическое, вероятное знание.

"Мнение, основанное на вероятии, -- писал он, -- может быть, также заслуживает названия знания, в противном случае должны отпасть почти все историческое знание и многое другое. Но, не вдаваясь в спор о словах, я думаю, что исследование степеней вероятностей было бы очень важным и отсутствие его представляет большой пробел в наших работах по логике". Г. Лейбниц, так же как и Г. Галилей, обращал внимание на важную роль гипотез в научном познании. Сегодня эти идеи имеют фундаментальное значение.

-- Они строят свои модели, претендуя на построение логики открытия

Попытки построения различного рода логик открытия прекратились еще в прошлом веке. Была понята полная их несостоятельность. Это стало очевидным в результате как психологических, так и философских исследований творческой деятельности человека.

Приговор был такой: никакой логики научного открытия в принципе не может быть. Ни в каком смысле алгоритма здесь не существует.

3. ОТ ЛОГИКИ ОТКРЫТИЯ К ЛОГИКЕ ПОДТВЕРЖДЕНИЯ

В первой половине XX в. одной из наиболее популярных становится гипотетико-дедуктивная модель научного познания.

Создание логики открытия предполагало, что сам процесс получения нового знания гарантирует его истинность. Но если не существует никаких методов открытия, то очевидно, что в науку проникают утверждения, носящие гипотетический характер. Они, конечно, требуют испытания на непротиворечивость, а главное -- на соответствие наблюдаемым и опытным данным. Свободное творчество в процессе выдвижения различного рода обобщений, таким образом, имеет вполне естественное ограничение.

Складывалось следующее представление о процессе научного познания.

-- Ученый выдвигает гипотетическое обобщение, из него дедуктивно выводятся различного рода следствия, которые затем сопоставляются с эмпирическими данными.

-- Те гипотезы, которые противоречат опытным данным, отбрасываются, а подтвержденные утверждаются в качестве научного знания.

-- Эмпирическое содержание любого обобщения и определяет его подлинный смысл.

-- Теоретическое утверждение, чтобы быть научным, обязательно должно иметь возможность соотноситься с опытом и подтверждаться им.

Однако, когда мы говорим, что истинность того или иного утверждения известна из опыта, мы фактически ссылаемся на принцип индукции, согласно которому универсальные высказывания основываются на индуктивных выводах.

"Этот принцип, -- утверждает Рейхенбах, -- определяет истинность научных теорий. Устранение его из науки означало бы не более и не менее как лишение науки ее способности различать истинность и ложность ее теорий. Без него наука, очевидно, более не имела бы права говорить об отличии своих теорий от причудливых и произвольных созданий поэтического ума". Поэтому основной задачей методологии науки становится разработка индуктивной логики.

Однако никакими эмпирическими данными, как отмечал Р. Карнап, невозможно установить истинность универсального обобщающего суждения. Сколько бы раз ни испытывался какой-либо закон, не существует гарантий, что не появятся новые наблюдения, которые будут ему противоречить.

“Никогда нельзя достигнуть полной верификации закона, -- писал Р. Карнап. -- Фактически мы вообще не должны говорить о "верификации" -- если под этим словом мы понимаем окончательное установление истинности, -- а только о подтверждении”.

Итак, теоретические построения науки по своей сути могут быть лишь гипотетическими. Они не в силах стать истинными, а могут претендовать лишь на правдоподобие. Поскольку оно выявляется в сопоставлении теоретических гипотез с эмпирическими данными, процедура подтверждения становится в научном познании чрезвычайно важной. Также очевидно, что индуктивная логика, устанавливающая их связь, может быть лишь вероятностной. Как считал Р. Карнап, именно стадия подтверждения в отличие от стадии открытия, выдвижения гипотезы должна и может находиться под рациональным контролем.

"Я согласен, -- замечал Р. Карнап, -- что не может быть создана индуктивная машина, если цель машины состоит в изобретении новых теорий. Я верю, однако, что может быть построена индуктивная машина со значительно более скромной целью. Если даны некоторые наблюдения е и гипотеза h (в форме, скажем, предсказания или даже множества законов), тогда я уверен, что во многих случаях путем чисто механической процедуры возможно определить логическую вероятность или степень подтверждения h на основе е".

Если бы удалось решить эту задачу, тогда, вместо того чтобы говорить, что один закон обоснован хорошо, а другой -- слабо, мы бы имели точные, количественные оценки степени их подтверждения. Конечно, их знание не является еще достаточным для принятия решения, связанного с выбором одной из конкурирующих гипотез. Однако, как считал Р. Карнап, при прочих равных условиях эти оценки имели бы важное значение для ученых.

Реализация этой программы предполагала прежде всего построение вероятностной логики, применимой к реальным высказываниям науки. Однако дело до этого не дошло.

И хотя Р. Карнапу удалось построить вероятностную логику для простейших языков, что уже представляло значительньш вклад в науку, его программа в целом не привела к достижению цели.

Он испытал еще один путь в попытках понять процесс научного познания и своим упорством и настойчивостью продемонстрировал его бесперспективность. К. Поппер выразил по существу мнение научного сообщества, когда писал:

“Я не думаю, что имеется такая вещь, как "индуктивная логика", в карнаповском или в любом ином смысле”.

Дело здесь не только в том, что такого рода логику трудно построить. Как показали дальнейшие исследования, степень подтверждения гипотезы в процессе научного познания не представляется столь значимой, как это казалось Р. Карнапу.

"Наука похожа на детективный рассказ, -- писал Ф. Франк. -- Все факты подтверждают определенную гипотезу, но правильной оказывается в конце концов совершенно другая гипотеза".

наука философия

4. ФАЛЬСИФИЦИРУЕМОСТЬ КАК КРИТЕРИИ НАУЧНОСТИ

К.Поппер обратил внимание на то, что процедуры подтверждения и опровержения имеют совершенно различный познавательный статус.

Никакое количество наблюдаемых белых лебедей не является достаточным основанием для установления истинности утверждения "все лебеди белые". Вместе с тем достаточно увидеть одного черного лебедя, чтобы признать это утверждение ложным. Эта асимметрия, как показывал К. Поппер, имеет решающее значение для понимания процесса научного познания.

Основные свои идеи, связанные с пониманием статуса опровержения в оценке научных гипотез, он изложил следующим образом:

“(1) Легко получить подтверждения, или верификации, почти для каждой теории, если мы ищем подтверждений.

Подтверждения должны приниматься во внимание только в том случае, если они являются результатом рискованных предсказаний, т. е. когда мы, не будучи осведомленными о некоторой теории, ожидали бы события, несовместимого с этой теорией, -- события, опровергающего данную теорию.

Каждая "хорошая" научная теория является некоторым запрещением: она запрещает появление определенных событий. Чем больше теория запрещает, тем она лучше.

(4) Теория, не опровержимая никаким мыслимым событием, является ненаучной. Неопровержимость представляет собой не достоинство теории (как часто думают), а ее порок.

(5) Каждая настоящая проверка теории является попыткой ее фальсифицировать, т. е. опровергнуть. Проверяемость есть фальсифицируемость; при этом существуют степени проверяемости: одни теории более проверяемы, в большей степени опровержимы, чем другие; такие теории подвержены, так сказать, большему риску.

(6) Подтверждающее свидетельство не должно приниматься в расчет, за исключением тех случаев, когда оно является результатом подлинной проверки теории. Это означает, что его следует понимать как результат серьезной, но безуспешной попытки фальсифицировать теорию. (Теперь в таких случаях я говорю о "подкрепляющем свидетельстве".)

Некоторые подлинно проверяемые теории после того, как обнаружена их ложность, все-таки поддерживаются их сторонниками, например, с помощью введения таких вспомогательных допущений ad hoc или с помощью такой переинтерпретации ad hoc теории, которые избавляют ее от опровержения. Такая процедура всегда возможна, но она спасает теорию от опровержения только ценой уничтожения или по крайней мере уменьшения ее научного статуса. (Позднее такую спасательную операцию я назвал "конвенционали стекой стратегией" или "конвенционалистской уловкой".)

Все сказанное можно суммировать в следующем утверждении: критерием научного статуса теории являются ее фальсифицируемость, опровержимость или проверяемость”.

Позиция К. Поппера достаточно ясна. Она не требует комментариев.Здесь важно лишь обратить внимание на то, что в его модели все знание оказывается гипотетичным.

Научное познание, согласно К. Попперу, направлено на поиск истины. Но она недостижима не только на уровне теории, но даже и в эмпирическом знании просто в силу его теоретической нагруженности.

“Наука не покоится на твердом фундаменте фактов, -- писал К. Поппер. -- Жесткая структура ее теорий поднимается, так сказать, над болотом. Она подобна зданию, воздвигнутому на сваях. Эти сваи забиваются в болото, но не достигают никакого естественного или "данного" основания. Если же мы перестаем забивать сваи дальше, то вовсе не потому, что достигли твердой почвы. Мы останавливаемся просто тогда, когда убеждаемся, что сваи достаточно прочны и способны, по крайней мере некоторое время, выдержать тяжесть нашей структуры”.

И еще одно замечание. В этой своей критике индуктивизма К. Поппер остался последовательным сторонником эмпиризма. И признание теории, и отказ от нее всецело определяются опытом.

"До тех пор пока теория выдерживает самые строгие проверки, какие мы можем предложить, -- писал К. Поппер, -- она признается; если она их не выдерживает, она отвергается. Однако теория ни в каком смысле не выводится из эмпирических свидетельств. Не существует ни психологической, ни логической индукции. Из эмпирических свидетельств может быть выведена только ложность теории, и этот вывод является чисто дедуктивным".

5. КОНЦЕПЦИЯ "ТРЕТЬЕГО МИРА" К. ПОППЕРА

Большое влияние на современную методологию науки оказали те идеи, которые были выдвинуты К. Поппером в рамках концепции "третьего мира".

По мнению К. Поппера, важно различать три мира:

- первый мир -- реальность, существующая объективно;

-- второй мир -- состояние сознания и его активность;

-- третий мир -- "мир объективного содержания мышления, прежде всего содержания научных идей, поэтических мыслей и произведений искусства".

Философы прошлого уделяли большое внимание знанию в субъективном смысле, т.е. второму миру, и рассмотрению проблем соотношения второго и первого миров, в то же время мало изучали особенности жизни науки в третьем мире. А между тем для понимания сущности науки и закономерностей ее развития, да и процесса познания вообще, по мнению К. Поппера, эта область исследований имеет важнейшее значение.

"Немного существует вещей в современной проблемной ситуации в философии, -- писал К. Поппер, -- которые так же важны, как знание различия между двумя категориями проблем: проблемами производства, с одной стороны, и проблемами, связанными с произведенными структурами самими по себе, -- с другой".

Если применить это различение к науке, то мы должны выделить проблемы,

-связанные с деятельностью людей производящих знания,

-- относящиеся к особенностям продуктов познавательного процесса.

По мнению К. Поппера, изучение продуктов научного познания является более важным, чем исследование самого процесса научного исследования.

Более того, как он считает, даже о самом процессе получения научных знаний мы можем узнать больше, чем при непосредственном его изучении. Ведь и о психологии человека мы судим во многом по результатам его деятельности. Эта ситуация вполне естественна. Во всех науках причины обнаруживают по их следствиям.

Что же представляет собой этот третий мир?

"Обитателями моего третьего мира, -- пишет К. Поппер, -- являются прежде всего теоретические системы, другими важными его жителями являются проблемы и проблемные ситуации. Однако его наиболее важными обитателями... являются критические рассуждения и то, что может быть названо... состоянием дискуссий или состоянием критических споров; конечно, сюда относится и содержание журналов, книг и библиотек".

Третий мир представляет собой продукт человеческой деятельности. Он постоянно растет. Вместе с тем очень важно обратить внимание на его значительную автономность.

"Мир языка, предположений, теорий и рассуждений -- короче, универсум объективного знания является одним из самых важных созданных человеком универсумов".

Представим себе, пишет К. Поппер, что уничтожены все продукты человеческой деятельности и память о них в сознании людей, однако остались библиотеки и сохранилась наша способность воспринимать содержание книг, хранящихся в них. В этом случае цивилизация будет сравнительно быстро восстановлена. Но если будут уничтожены и библиотеки, то для возрождения цивилизации пройдут тысячелетия, т.е. надо будет начинать все сначала. "Если бы кто-либо должен был начать с того места, с которого начал Адам, он не сумел бы пойти дальше Адама".

Эти мысленные эксперименты показывают не только важность третьего мира, но и его автономность.

Конечно, третий мир создается человеком Однако он во многом не ведает сам, что творит, а результаты его деятельности начинают вести свою собственную жизнь, о которой человек и не задумывался.

"С нашими теориями, -- пишет К. Поппер, -- происходит то же, что и с нашими детьми они имеют склонность становиться в значительной степени независимыми от своих родителей. С нашими теориями может случиться то же, что и с нашими детьми мы можем приобрести от них большее количество знания, чем первоначально вложили в них".

Конечно, натуральный ряд чисел создан человеком, однако затем он сам становится объектом изучения, которое порождает необозримое количество знаний о числах. То же можно сказать о любой научной теории. Объекты третьего мира -- это не только их актуальная данность, но и потенция их развития

Естественно, что с каждым новым открытием в третьем мире появляются и совершенно новые, прежде не содержащиеся в нем даже потенциально проблемы и соответственно возможности их решения.

"И каждый такой шаг, -- замечает К. Поппер, -- будет создавать новые непреднамеренные факты, новые неожиданные проблемы, а часто также и новые опровержения" Третий мир не мог бы возникнуть без языка науки, ведь это лингвистический мир.

Двумя самыми важными функциями языка являются дескриптивная (описательная) и аргументативная. Вторая из них предполагает наличие первой. Аргументы, конечно, всегда имеют дело с некоторым" описаниями, которые критикуются с точки зрения их правдоподобия истинности.

Аргументативная функция языка появилась в связи с развитием рациональности в истории культуры, что и привело в конечном счете к возникновению науки. Учитывая это обстоятельство, можно, по-видимому, сказать, что аргументативная функция представляет собой наиболее мощное из всех средств приспособления к реальности, которое когда-либо существовало в органической эволюции.

Развитие общества приводит к тому, что возможности и значение дескриптивной и аргументативной функций постоянно возрастают. Вместо того чтобы все больше развивать свою память, человек обзаводится различного рода приспособлениями. Он изобретает бумагу, создает печатные станки и книги, пишущую машинку и, наконец, современную вычислительную технику, которые выводят его возможности в совершенно новое измерение. Критицизм является важнейшим источником роста третьего мира.

Любое исследование начинается с проблемы. Для ее решения ученый развивает теорию, которая критически оценивается через сопоставление с конкурирующими теориями и эмпирическими данными. В результате этой оценки возникает новая проблема.

"В большинстве своем и в самых интересных случаях теория терпит неудачу, и таким образом возникают новые проблемы А достигнутый прогресс может быть оценен интеллектуальным интервалом между первоначальной проблемой и новой проблемой, которая возникает из крушения теории".

Этот цикл может быть описан следующей схемой

Р => ТТ => ЕЕ => Р,

где Р -- исходная проблема, ТТ -- теория, претендующая на решение проблемы, ЕЕ -- оценка теории, ее критика и устранение ошибок, Р -- новая проблема.

Таким образом, процесс роста третьего мира "состоит в критике, обладающей творческим воображением"

Мы выходим в ней за пределы нашего опыта. Критически относясь к очевидному или освещенному мнению авторитетов, все подвергая сомнению, апробируя самые невероятные возможности, ученый преодолевает границы доступной ему прежде реальности.

"Вот каким образом, -- пишет К. Поппер, -- мы поднимаем себя за волосы из трясины нашего незнания, вот как мы бросаем веревку в воздух и затем карабкаемся по ней"

6. НАУЧНЫЕ РЕВОЛЮЦИИ, ПАРАДИГМЫ И НАУЧНЫЕ СООБЩЕСТВА

Идеи К.Поппера во многом содействовали тому, что методология науки стала все ближе смыкаться с историей науки.

Если вслед за К. Поппером считать, что главный вклад в методологию может дать анализ роста знания, то их тесное взаимодействие становится неизбежным. Прекрасное воплощение этого направления исследований продемонстрировал в своей работе о научных революциях Т. Кун.

Он обращает внимание на то, что в истории любой области науки можно выделить периоды "нормальной науки" и научные революции.

Под термином "нормальная наука" Т. Кун понимает исследования, которые осуществляются научным сообществом опираясь на крупные научные достижения, которые в течение некоторого времени признаются им как основа его дальнейшей деятельности В качестве примера здесь можно сослаться на работы Коперника, Ньютона, Эйнштейна, Лавуазье, Дарвина. Они определяют, как отмечает Т. Кун, так называемые парадигмы научной деятельности

"Под парадигмами, -- пишет Т. Кун, -- я подразумеваю признанные всеми научные достижения, которые в течение определенного времени дают модель постановки проблем и их решений научному сообществу".

Объективно задача "нормальной науки" состоит в том, чтобы выявить весь познавательный потенциал, который заложен в новых идеях, определяющих видение реальности и способов ее постижения.

"Концентрируя внимание на небольшой области относительно эзотерических проблем, -- отмечает Т. Кун, -- парадигма заставляет ученых исследовать некоторый фрагмент природы так детально и глубоко, как это было бы немыслимо при других обстоятельствах"

Здесь необходимы не только упорство, но и изобретательность и талант исследователя. Ведь перед ним постоянно возникают новые проблемы, которые раньше никто не мог даже и вообразить. Однако они всегда таковы, что не выходят за границы, определяемые парадигмой Поэтому Т. Кун называет их задачами-головоломками. Следует иметь в виду, что ни одна теория не в состоянии решить в данный момент всех проблем, которые перед ней стоят. Поэтому "нормальная наука", конечно, существует в условиях определенной интеллектуальной напряженности. Но ни у кого не вызывает сомнения, что все возникающие трудности будут преодолены. Однако рано или поздно в научном познании возникают кризисные явления, связанные с появлением трудностей в развитии "нормальной науки". Это связано прежде всего с появлением новых данных, которые в рамках принятой парадигмы выглядят аномалиями. В этих условиях ученые будут стараться модифицировать принятую теорию, дать такую интерпретацию новому явлению, которая бы не противоречила исходным принципам. Возрастание числа таких аномалий создает новую атмосферу в науке. Появляются подозрения в ее принципиальной неэффективности. Круг аномальных явлений расширяется за счет того, что теперь видятся старые трудности теории, на которые раньше закрывались глаза. Что прощалось и даже не замечалось у парадигмы в пору ее расцвета, теперь становится предметом пристального внимания.

В этих условиях ученые начинают по-разному относиться к парадигме и соответственно меняется характер их исследований

"Увеличение конкурирующих вариантов, готовность опробовать что-либо еще, выражение явного недовольства, обращение за помощью к философии и обсуждение фундаментальных положений -- все это симптомы перехода от нормального исследования к экстраординарному" Таким образом, возникает кризисная ситуация. Она разрешается в конце концов тем, что возникает новая парадигма. Тем самым в науке происходит подлинная революция. И вновь складываются условия для функционирования "нормальной науки". Важно обратить внимание на то, что переход к новой парадигме представляет собой некоторый социальный процесс. Т. Кун пишет: "Решение отказаться от парадигмы всегда одновременно есть решение принять другую парадигму, а приговор, приводящий к такому решению, включает как сопоставление обеих парадигм с природой, так и сравнение парадигм друг с другом".

Процесс такого сопоставления занимает нередко значительное время. Он представляет собой не только мучительные попытки сторонников старой парадигмы справиться с возникающими трудностями и полные вдохновения и энергии стремления новаторов развить и укрепить основание новых взглядов. Это и борьба убеждений, осуществление и крушение надежд.

Отказ от старых взглядов, конечно, непрост. Люди, которые отваживаются на это, обычно либо молоды, либо являются новичками в этой области науки. Утверждение новой парадигмы, как отмечает Т. Кун, осуществляется в условиях, когда большинство ученых еще не в состоянии мыслить по-новому, понятийный аппарат науки неадекватен новому содержанию. В это время новаторские идеи оказываются неассимилированными всей наукой. Однако вся эта перестройка неизбежна.

“Уайтхед, -- замечает Т. Кун, -- хорошо уловил неисторический дух научного сообщества, когда писал: "Наука, которая не решается забыть своих основателей, погибла". К счастью, вместо того чтобы забывать своих героев, ученые всегда имеют возможность забыть (или пересмотреть) их работы”.

В некотором смысле защитники различных парадигм живут в различных мирах. Конечно, поскольку они относят свои теории к действительности, которая существует объективно, их представления не могут быть произвольными. Но они по-разному воспринимают реальность. Различные парадигмы несоизмеримы. Поэтому переход от одной парадигмы к другой нельзя совершить постепенно посредством логики и ссылок на опыт. Он должен осуществляться сразу. Здесь ситуация подобна той, которая возникает, когда вы смотрите на рисунок с изображением двух профилей лица человека, обращенных друг к другу и нарисованных рядом. Вдруг вы замечаете, что видите не лица людей, а изображение вазы.

Говоря о развитии науки, нельзя уйти от обсуждения проблемы прогресса в ее истории. "Революции оканчиваются победой одного из двух противоборствующих лагерей, -- пишет Т. Кун. -- Будет ли эта группа утверждать, что результат ее победы не есть прогресс? Это было бы равносильно признанию, что они ошибаются и что их оппоненты правы".

Если посмотреть на развитие науки в целом, то в ней очевиден прогресс, выражающийся в том, что научные теории предоставляют все большие возможности ученым для решения головоломок.

Однако нет никаких оснований считать более поздние теории лучше отражающими происходящее в действительности.

"Я не сомневаюсь, например, что ньютоновская механика, -- пишет Т. Кун, -- улучшает механику Аристотеля и что теория относительности улучшает теорию Ньютона в том смысле, что дает лучшие инструменты для решения головоломок. Но в их последовательной смене я не вижу связного и направленного онтологического развития".

Концепция развития науки Т. Куна является по существу и философско-методологической и историографической. Важной ее особенностью является обращение к социально-психологическим аспекта? деятельности ученых, которые, по его мнению, существенно влияют на характер развития науки.

7. МЕТОДОЛОГИЯ ИССЛЕДОВАТЕЛЬСКИХ ПРОГРАММ

"Некоторые философы, -- пишет И. Лакатос, -- столь озабочены решением своих эпистемологических и логических проблем, что так и не достигают того уровня, на котором их бы могла заинтересовать реальная история науки. Если действительная история не соответствует их стандартам, они, возможно, с отчаянной смелостью предложат начать заново все дело науки". Как считает И. Лакатос, всякая методологическая концепция должна функционировать как историографическая. Наиболее глубокая ее оценка может быть дана через критику той рациональной реконструкции истории науки, которую она предлагает.

И. Лакатос развивает свою, довольно близкую к куновской, концепцию методологии научного познания, которую он называет методологией научно-исследовательских программ. Она применяется им не только для трактовки особенностей развития науки, но и для оценки различных конкурирующих логик научного исследования. Согласно И. Лакатосу, развитие науки представляет собой конкуренцию научно-исследовательских программ. Сущность научной революции заключается в том, что одна исследовательская программа вытесняет другую.

Поэтому фундаментальной единицей оценки процесса развития науки является не теория, а исследовательская программа. .

-- Она включает в себя "жесткое ядро", в которое входят неопровергаемые для сторонников программы фундаментальные положения.

-- Кроме того, в нее входит "позитивная эвристика", которая "определяет проблемы для исследования, выделяет защитный пояс вспомогательных гипотез, предвидит аномалии и победоносно превращает их в подтверждающие примеры".

-- Исследовательская программа может развиваться прогрессивно и регрессивно. В первом случае ее теоретическое развитие приводит к предсказанию новых фактов. Во втором программа лишь объясняет новые факты, предсказанные конкурирующей программой либо открытые случайно.

Исследовательская программа испытывает тем большие трудности, чем больше прогрессирует ее конкурент. Это связано с тем, что предсказываемые одной программой факты всегда являются аномалиями для другой.

И. Лакатос подчеркивает большую устойчивость исследовательной программы.

"Ни логическое доказательство противоречивости, ни вердикт ученых об экспериментально обнаруженной аномалии не могут одним ударом уничтожить исследовательскую программу".

Главная ценность программы -- ее способность пополнять знания, предсказывать новые факты. Противоречия же и трудности в объяснении каких-либо явлений -- И. Лакатос здесь, несомненно, прав, -- не влияют существенно на отношение к ней ученых.

В геометрии Евклида на протяжении двух тысяч лет не удавалось! решить проблему пятого постулата.

Многие десятилетия на весьма противоречивой основе развивались исчисление бесконечно малых, теория вероятностей, теория множеств.

Известно, что Ньютон не мог на основании механики объяснить стабильность Солнечной системы и утверждал, что Бог исправляет отклонения в движении планет, вызванные различного рода возмущениями.

Несмотря на то что такое объяснение вообще никого не удовлетворяло, кроме, может быть, самого Ньютона, который был, как известно, очень религиозным человеком (он считал, что его исследования в теологии не менее значимы, чем в математике и механике), небесная механика в целом успешно развивалась. Эту проблему удалось решить Лапласу только в начале XIX в.

Еще один классический пример.

Дарвин не мог объяснить так называемого "кошмара Дженкинса", и тем не менее его теория успешно развивалась. Известно, что дарвиновская теория базируется на трех факторах: изменчивости, наследственности и отборе. У любого организма имеется изменчивость, осуществляющаяся ненаправленным образом. В силу этого изменчивость только в небольшом количестве случаев может быть благоприятной для приспособления данного организма к окружающей среде. Какая-то изменчивость не наследуется, какая-то наследуется. Эволюционное значение имеет наследуемая изменчивость. По Дарвину, большую возможность для будущего имеют те организмы, которые наследуют такого рода изменения, которые дают им большую возможность для приспособления к окружающей среде. Такие организмы лучше выживают и становятся основой для нового шага эволюции. Для Дарвина законы наследования -- то, как наследуется изменчивость, -- имели решающее значение. В своей концепции наследования он исходил из той идеи, что наследственность осуществляется непрерывным образом. Представим себе, что белый человек попал на Африканский континент. Признаки белого, в том числе и "белизна", будут, по Дарвину, передаваться следующим образом. Если он женится на негритянке, то у их детей будет половина крови "белой". Поскольку на континенте белый один, то его дети будут вступать в брак с неграми. Но в таком случае доля "белизны" будет асимптотически убывать и в конце концов исчезнет. Эволюционного значения она иметь не может.

Такого рода соображения высказал Дженкинс. Он обратил внимание на то, что положительные качества, которые способствуют приспособлению организма к среде, встречаются крайне редко. И следовательно, организм, который будет иметь эти качества, заведомо встретится с организмом, который эти качества не будет иметь, и в последующих поколениях положительный признак рассеется. Следовательно, он не может иметь эволюционного значения.

Дарвин никак не мог справиться с этой задачей. Не случайно это рассуждение получило название "кошмара Дженкинса". У дарвиновской теории были еще и другие трудности. И хотя к учению Дарвина на разных этапах относились по-разному, но дарвинизм никогда не умирал, всегда у него были последователи. Как известно, современная эволюционная концепция -- синтетическая теория эволюции -- базируется на идеях Дарвина, соединенных, правда, с менделевской концепцией дискретных носителей наследственности, которая, кстати, и ликвидирует "кошмар Дженкинса".

В рамках концепции И. Лакатоса становится особенно очевидной важность теории и связанной с ней исследовательской программы для деятельности ученого. Вне ее ученый просто не в состоянии работать. Главным источником развития науки является не взаимодействие теории и эмпирических данных, а конкуренция исследовательских программ в деле лучшего описания и объяснения наблюдаемых явлений и, самое главное, предсказания новых фактов.

Поэтому, изучая закономерности развития науки, необходимо особое внимание уделять формированию, развитию и взаимодействию исследовательских программ. И. Лакатос показывает, что достаточно богатую научную программу всегда можно защитить от любого ее видимого несоответствия с эмпирическими данными. И. Лакатос рассуждает в таком стиле. Допустим, что мы на базе небесной механики рассчитали траектории движения планет. С помощью телескопа мы фиксируем их и видим, что они отличаются от расчетных. Разве ученый скажет в этом случае, что законы механики неверны? Конечно, нет. У него даже мысли такой не появится. Он наверняка скажет, что либо неточны измерения, либо неправильны расчеты. Он, наконец, может допустить наличие другой планеты, которую еще не наблюдали, которая и вызывает отклонение траектории планеты от расчетной (так и было на самом деле, когда Леверье и Адамс открыли новую планету).

А допустим, что в том месте, где они ожидали увидеть планету, ее бы не оказалось. Что они сказали бы в этом случае? Что механика неверна? Нет, этого бы не случилось. Они наверняка придумали бы какие-нибудь другие объяснения для этой ситуации.

Эти идеи очень важны. Они позволяют понять, с одной стороны, как научные концепции преодолевают стоящие на их пути барьеры, а с другой -- почему всегда существуют альтернативные исследовательские программы.

Мы знаем, что даже тогда, когда эйнштейновская теория относительности вошла в контекст культуры, антиэйнштейновские теории продолжали жить. А вспомним, как развивалась генетика. Ламаркистские идеи воздействия внешней среды на организм защищались несмотря на то, что была масса фактов, которые противоречили этому.

Достаточно сильная в теоретическом отношении идея всегда оказывается достаточно богатой для того, чтобы ее можно было защищать.

С точки зрения И. Лакатоса, можно "рационально придерживаться регрессирующей программы до тех пор, пока ее не обгонит конкурирующая программа, и даже после этого". Всегда существует надежда на временность неудач. Однако представители регрессирующих программ неминуемо будут сталкиваться со всевозрастающими социально-психологическими и экономическими проблемами.Конечно, никто не запрещает ученому разрабатывать ту программу, которая ему нравится. Однако общество не будет оказывать ему поддержки.

"Редакторы научных журналов, -- пишет И. Лакатос, -- станут отказываться публиковать их статьи, которые в общем будут содержать либо широковещательные переформулировки их позиции, либо изложение контрпримеров (или даже конкурирующих программ) посредством лингвистических ухищрений ad hoc. Организации, субсидирующие науку, будут отказывать им в финансировании..."

"Я не утверждаю, -- замечает он, -- что такие решения обязательно будут бесспорными. В подобных случаях следует опираться на здравый смысл".

Концепция исследовательских программ И.Лакатоса может, как это он сам демонстрирует, быть применена и к самой методологии науки. В каждой из рассмотренных нами методологических концепций есть "жесткое ядро", "позитивная эвристика", прогрессивная и регрессивная стадии развития.

С этой точки зрения рассмотренные нами подходы к трактовке особенностей научного познания следует оценивать по тому вкладу, который они внесли в расширение понятийного аппарата и проблематики философии и методологии науки. И конечно, необходимо соотносить эти концепции со временем, с той интеллектуальной средой, в которой они рождались, жили и умирали.

XII. ПРИРОДА ФУНДАМЕНТАЛЬНЫХ НАУЧНЫХ ОТКРЫТИЙ

Среди многообразных видов научных открытий особое место занимают фундаментальные открытия, изменяющие наши представления о действительности в целом, т.е. носящие мировоззренческий характер.

1. ДВА РОДА ОТКРЫТИЙ

А.Эйнштейн в свое время писал, что физик-теоретик "в качестве фундамента нуждается в некоторых общих предположениях, так называемых принципах, исходя из которых он может вывести следствия. Его деятельность, таким образом, разбивается на два этапа. Во-первых, ему необходимо отыскать эти принципы, во-вторых, развивать вытекающие из этих принципов следствия. Для выполнения второй задачи он основательно вооружен еще со школы. Следовательно, если для некоторой области и соответственно совокупности взаимосвязей первая задача решена, то следствия не заставят себя ждать. Совершенно иного рода первая из названных задач, т.е. установление принципов, могущих служить основой для дедукции. Здесь не существует метода, который можно было бы выучить и систематически применять для достижения цели".

Мы будем заниматься главным образом обсуждением проблем, связанных с решением задач первого рода, но для начала уточним наши представления о том, как решаются задачи второго рода.

Представим себе следующую задачу. Имеется окружность, через центр которой проведены два взаимно перпендикулярных диаметра. Через точку А, находящуюся на одном из диаметров на расстоянии 2/3 от центра окружности О, проведем прямую, параллельную другому диаметру, а из точки В пересечения этой прямой с окружностью опустим перпендикуляр на второй диаметр, обозначив их точку пересечения через С. Нам необходимо выразить длину отрезка АС через функцию от радиуса.

Как мы будем решать эту школьную задачу?

Обратимся для этого к определенным принципам геометрии, восстановим цепочку теорем. При этом мы пытаемся использовать все имеющиеся у нас данные. Заметим, что раз проведенные диаметры взаимно перпендикулярны, треугольник ОАС является прямоугольным. Величина ОА=2/Зr. Постараемся теперь найти длину второго катета, чтобы затем применить теорему Пифагора и определить длину гипотенузы АС. Можно попробовать использовать и какие-то другие методы. Но вдруг, внимательно посмотрев на рисунок, мы обнаруживаем, что ОАВС -- это прямоугольник, у которого, как известно, диагонали равны, т.е. АС=ОВ. 0В же равно радиусу окружности, следовательно, без всяких вычислений ясно, что АС=r.

Вот оно -- красивое и психологически интересное решение задачи.

В приведенном примере важно следующее.

-- Во-первых, задачи подобного рода обычно относятся к четко определенной предметной области. Решая их, мы ясно представляем себе, где, собственно, надо искать решение. В данном случае мы не задумываемся над тем, правильны ли основания Евклидовой геометрии, не нужно ли придумать какую-то другую геометрию, какие-то особые принципы, чтобы решить задачу. Мы сразу истолковываем ее как относящуюся к области Евклидовой геометрии.


Подобные документы

  • Философский анализ науки как специфическая система знания. Общие закономерности развития науки, её генезис и история, структура, уровни и методология научного исследования, актуальные проблемы философии науки, роль науки в жизни человека и общества.

    учебное пособие [524,5 K], добавлен 05.04.2008

  • Исторические источники аналитической философии науки. "Лингвистический поворот" в философии. Краткая история развития логического позитивизма. Характеристика главных особенностей принципа верификации. Модель развития научного знания по Томасу Куну.

    реферат [23,7 K], добавлен 15.07.2014

  • Наука как сфера человеческой деятельности. Философия как методология науки. Философия и наука как "звенья единой цепи" в направленности человеческого интеллекта к постижению основ бытия. Понятие и критерии научности. Научные и ненаучные типы философии.

    реферат [36,4 K], добавлен 28.07.2010

  • Философия науки, как ветвь аналитической философии, которая занимается изучением науки как особой сферы человеческой деятельности. Методологическая концепция науки в трудах К. Поппера. Роль парадигм в науке. Методология научно-исследовательских программ.

    реферат [48,2 K], добавлен 27.04.2017

  • Дифференциация, интеграция, внутридисциплинарное взаимодействие, междисциплинарное взаимодействие современных отраслей научного знания. Функции философия в научном познании. Сходства и различия философии и науки. Фундаментальные научные открытия.

    реферат [43,1 K], добавлен 12.06.2013

  • Проблематика философии науки, ее особенности в различные исторические эпохи. Критерии научности и научного познания. Научные революции как перестройка основ науки. Сущность современного этапа развития науки. Институциональные формы научной деятельности.

    реферат [44,1 K], добавлен 24.12.2009

  • Идеи постпозитивизма и их место в современной философии, направления и их отличительные признаки. Сущность философии науки, попытки создания "науки о науке" и их главные результаты. Причины "отпочкования" от философии различных научных направлений.

    материалы конференции [27,9 K], добавлен 19.10.2009

  • Наука как особый вид знания и подходы к изучению науки. Позитивизм как философия научного знания, стадии его развития. Роль философии на позитивном этапе. Отличительные особенности неопозитивизма и сущность концепции нейтральных элементов опыта.

    реферат [85,6 K], добавлен 17.12.2015

  • Эволюция подходов к анализу науки. Постпозитивистская традиция в философии науки. Культура античного полиса и становление первых форм теоретической науки. Западная и восточная средневековая наука. Эволюция учения о методе в истории философии.

    шпаргалка [275,5 K], добавлен 15.05.2007

  • Учение о науке, ее субъективность, развитие идеи в "духе" (в который переходит природа) в философии Ф. Гегеля. Особенность и своеобразие науки в отличие от философии (метафизики) по И. Канту. Позитивная философия французского философа Огюста Конта.

    реферат [20,7 K], добавлен 16.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.