Методы научного познания

Научное познание и его особенности. Этапы процесса познания. Формы чувственного и рационального познания. Понятие метода и методологии. Классификация методов научного познания. Принцип всесторонности рассмотрения объектов. Комплексный подход в познании.

Рубрика Философия
Вид реферат
Язык русский
Дата добавления 15.05.2009
Размер файла 74,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

«Современные комплексные научно-технические дисциплины и исследования, являются реальностью современной науки. Однако они не укладываются в традиционные организационные формы и методологические стандарты. Именно в сфере этих исследований и дисциплин осуществляется сейчас практическое «внутреннее» взаимодействие общественных, естественных и технических наук... Такие исследования (к которым, например, относятся исследования в области искусственного интеллекта) требуют особой организационной поддержки и поиска новых организационных форм науки Однако, к сожалению, их развитие затрудняется именно в силу их нетрадиционности, отсутствия в массовом (а иногда и профессиональном) сознании четкого представления об их месте в системе современной науки и техники» Горохов В.Г. «Научно-технические дисциплины, инженерная деятельность и проектирование (проблемы развития и исследования)». Философские науки 1989 №3 стр.24.

Ныне комплексность (как один из важных аспектов диалектической методологии) является составным элементом современного глобального мышления. Основанные на нем поиски решения глобальных проблем современности требуют научно обоснованного (и политически взвешенного) комплексного подхода.

3.2.2 Принцип рассмотрения во взаимосвязи. Системное познание

Проблема учета связей исследуемой вещи с другими вещами занимает важное место в диалектическом методе познания, отличая его от метафизического. Метафизичность мышления многих ученых-естествоиспытателей, игнорировавших в своих исследованиях реальные взаимосвязи, существующие между объектами материального мира, породила в свое время немало трудностей в научном познании. Преодолеть эти трудности помог начавшийся в XIX в. переход от метафизики к диалектике, «...рассматривающей вещи не в их изолированности, а в их взаимной связи» Маркс К., Энгельс Ф., Соч. Т-20. стр.580.

Прогресс научного познания уже в XIX в., а тем более в XX столетии показал, что любой ученый -- в какой бы области знания он ни работал -- неизбежно потерпит неудачу в исследовании, если будет рассматривать изучаемый объект вне связи с другими объектами, явлениями или если будет игнорировать характер взаимосвязей его элементов. В последнем случае ока- жется невозможным понять и изучить материальный объект в его целостности, как систему.

Система -- это всегда некоторая целостность, представляющая собой совокупность элементов, функциональные свойства и возможные состояния которой обусловлены не только составом, строением и т. п. составляющих ее элементов, но и характером их взаимных связей.

Для изучения объекта как системы требуется и особый, системный подход к его познанию. Последний должен учитывать качественное своеобразие системы по отношению к своим элементам (т. е. что она -- как целостность -- обладает свойствами, которых нет у составляющих ее элементов).

При этом следует иметь в виду, что «... хотя свойства системы в целом не могут быть сведены к свойствам элементов, они могут быть объяснены в своем происхождении, в своем внутреннем механизме, в способах своего функционирования на основе учета свойств элементов системы и характера их взаимосвязи и взаимообусловленности. В этом заключена методологическая суть системного подхода. В противном случае -- если бы между свойствами элементов и характером их взаимосвязи, с одной стороны, и свойствами целого, с другой стороны, не было связи, не было бы никакого научного смысла в рассмотрении системы именно как системы, то есть как совокупности элементов с определенными свойствами. Тогда пришлось бы систему рассматривать просто как вещь, обладающую свойствами безотносительно к свойствам элементов и структуре системы» Философия и естествознание. Вып. 3 Методология системно-структурных исследований. Воронеж, 1981

стр.21-22.

«Принцип системности требует разграничения внешней и внутренней сторон материальных систем, сущности и ее проявлений, обнаружения многоразличных сторон предмета, их единства, раскрытия формы и содержания, элементов и структуры, случайного и необходимого и т. п. Этот принцип направляет мышление на переход от явлений к их сущности, к познанию целостности системы, а также необходимых связей рассматриваемого предмета с окружающими его предметами процессами. Принцип системности требует от субъекта ставить в центр познания представление о целостности, которое призвано руководить познанием от начала и до конца исследования, как бы оно ни распадалось на отдельные возможно, на первый взгляд и не связанные друг с другом, циклы или моменты; на всем пути познания представление о целостности будет изменяться, обогащаться, но оно всегда должно быть системным, целостным представлением об объекте» Алексеев П.В, Панин А.В. «Философия» М-2000 стр.389

.

Принцип системности нацелен на всестороннее познание предмета, как он существует в тот или иной момент времени; он нацелен на воспроизведение его сущности, интегративной основы, а также разнообразие его аспектов, проявлений сущности при ее взаимодействии с другими материальными системами. Здесь предполагается, что данный предмет отграничивается от своего прошлого, от предыдущих своих состояний; делается это для более направленного познания его актуального состояния. Отвлечение от истории в этом случае -- законный прием познания.

Распространение системного подхода в науке было связано с усложнением объектов исследования и с переходом от метафизико-механистической методологии к диалектической. Симптомы исчерпания познавательного потенциала метафизико-механистической методологии, ориентировавшийся на сведение сложного к отдельным связям и элементам, появились еще в XIX в., а на рубеже XIX и XX вв. кризис такой методологии обнаружился уже совершенно отчетливо, когда здравый человеческий рассудок все больше начал соприкасаться с предметами, взаимодействующими с другими материальными системами, со следствиями, которые уже нельзя (не допуская явной ошибки) отрывать от породивших их причин.

3.2.3 Принцип детерминизма

Детерминизм -- (от лат. determino -- определяю) -- это философское учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и духовного мира. Основу данного учения составляет положение о существовании причинности, т. е. такой связи явлений, в которой одно явление (причина) при определенных условиях с необходимостью порождает другое явление (следствие). Еще в трудах Галилея, Бэкона, Гоббса, Декарта, Спинозы было обосновано положение о том, что при изучении природы надо искать действующие причины и что «истинное знание есть знание посредством причин» (Ф. Бэкон).

Уже на уровне явлений детерминизм позволяет отграничить необходимые связи от случайных, существенные от несущественных, установить те или иные повторяемости, коррелятивные зависимости и т. п., т. е. осуществить продвижение мышления к сущности, к каузальным связям внутри сущности. Функциональные объективные зависимости, например, есть связи двух и более следствий одной и той же причины, и познание регулярностей на феноменологическом уровне должно дополняться познанием генетических, производящих причинных связей. Познавательный процесс, идущий от следствий к причинам, от случайного к необходимому и существенному, имеет целью раскрытие закона. Закон же детерминирует явления, а потому познание закона объясняет явления и изменения, движения самого предмета.

Современный детерминизм предполагает наличие разнообразных объективно существующих форм взаимосвязи явлений. Но все эти формы в конечном счете складываются на основе всеобще действующей причинности, вне которой не существует ни одно явление действительности.

3.2.4 Принцип изучения в развитии. Исторический и логический подход в познании

Принцип изучения объектов в их развитии является одним из важнейших принципов диалектического метода познания. В этом состоит одно из принципиальных отличий.диалектического метода от метафизического. Мы не получим истинного знания, если будем изучать вещь в мертвом, застывшем состоянии, если будем игнорировать такой важнейший аспект ее бытия, как развитие. Только изучив прошлое интересующего нас объекта, историю его возникновения и формирования, можно понять его нынешнее состояние, а также предсказать его будущее.

Принцип изучения объекта в развитии может реализоваться в познании двумя подходами: историческим и логическим (или, точнее сказать, логико-историческим).

При историческом подходе история объекта воспроизводится в точности, во всей ее многогранности, с учетом всех деталей, событий, включая и всякого рода случайные отклонения, «зигзаги» в развитии. Такой подход применяется при подробном, доскональном изучении человеческой истории, при наблюдениях, например, за развитием каких-то растений, живых организмов (с соответствующими описаниями этих наблюдений во всех подробностях) и т. д.

При логическом подходе также воспроизводится история объекта, но при этом она подвергается определенным логическим преобразованиям: обрабатывается теоретическим мышлением с выделением общего, существенного и освобождается в то же время от всего случайного, несущественного, наносного, мешающего выявлению закономерности развития изучаемого объекта.

Такой подход в естествознании XIX в. был успешно (хотя и стихийно) реализован Ч. Дарвиным. У него впервые логический процесс познания органического мира исходил из исторического процесса развития этого мира, что позволило научно решить вопрос о возникновении и эволюции видов растений и животных.

Выбор того или иного -- исторического или логического -- подхода в познании обусловливается природой изучаемого объекта, целями исследования и другими обстоятельствами. В то же время в реальном процессе познания оба указанных подхода тесно взаимосвязаны. Исторический подход не обходится без какого-то логического осмысления фактов истории развития изучаемого объекта. Логический же анализ развития объекта не противоречит его подлинной истории, исходит из нее.

Эту взаимосвязь исторического и логического подходов в познании особо подчеркивал Ф. Энгельс. «...Логический метод, -- писал он, -- ...в сущности является не чем иным, как тем же историческим методом, только освобожденным от исторической формы и от мешающих случайностей. С чего начинается история, с того же должен начинаться и ход мыслей, и его дальнейшее движение будет представлять собой не что иное, как отражение исторического процесса в абстрактной и теоретически последовательной форме; отражение исправленное, но исправленное соответственно законам, которые дает сам действительный исторический процесс...» «История, -- поясняет Ф. Энгельс, -- часто идет скачками и зигзагами, и если бы обязательно было следовать за ней повсю-ду, то пришлось бы не только поднять много материала незна-чительной важности, но и часто прерывать ход мыслей» (К.Маркс, Ф. Энгельс. Соч. Т. 13. С. 497).

Логико-исторический подход, опирающийся на мощь теоретического мышления, позволяет исследователю достичь логически реконструированного, обобщенного отражения исторического развития изучаемого объекта. А это ведет к получению важных научных результатов.

Кроме указанных выше принципов диалектический метод включает в себя и другие принципы -- объективность, конкретность «раздвоение единого» (принцип противоречия) и др. Эти принципы формулируются на основе соответствующих законов и категорий, в своей совокупности отражающих единство, целостность объективного мира в его беспрерывном развитии.

3.3 Общенаучные методы эмпирического познания

3.3.1 Научное наблюдение и описание

Наблюдение есть чувственное (преимущественно-визуальное) отражение предметов и явлений внешнего мира. «Наблюдение -- это целенаправленное изучение предметов, опирающееся в основном на такие чувственные способности человека, как ощущение, восприятие, представление; в ходе наблюдения мы получаем знание о внешних сторонах, свойствах и признаках рассматриваемого объекта» Алексеев П.В, Панин А.В. «Философия» М-2000 стр.376. Это -- исходный метод эмпирического познания, позволяющий получить некоторую первичную информацию об объектах окружающей действительности.

Научное наблюдевие (в отличие от обыденных, повседневных наблюдений) характеризуется рядом особенностей:

-- целенаправленностью (наблюдение должно вестись для решения поставленной задачи исследования, а внимание наблюдателя фиксироваться только на явлениях, связанных с этой задачей );

-- планомерностью (наблюдение должно проводиться строго по плану, составленному исходя из задачи исследования);

-- активностью (исследователь должен активно искать, выделять нужные ему моменты в наблюдаемом явлении, привлекая для этого свои знания и опыт, используя различные технические средства наблюдения).

Научные наблюдения всегда сопровождаются описанием объекта познания. Эмпирическое описание -- это фиксация средствами естественного или искусственного языка сведений об объектах, данных в наблюдении. С помощью описания чувственная информация переводится на язык понятий, знаков, схем, рисунков, графиков и цифр, принимая тем самым форму, удобную для дальнейшей рациональной обработки. Последнее необходимо для фиксирования тех свойств, сторон изучаемого объекта, которые составляют предмет исследования. Описания результатов наблюдений образуют эмпирический базис науки, опираясь на который исследователи создают эмпирические обобщения, сравнивают изучаемые объекты по тем или иным параметрам, проводят классификацию их по каким-то свойствам, характеристикам, выясняют последовательность этапов их становления и развития.

Почти каждая наука проходит указанную первоначальную, «описательную» стадию развития. При этом, как подчеркивается в одной из работ, касающихся этого вопроса, «основные требования, которые предъявляются к научному описанию, направлены на то, чтобы оно было возможно более полным, точным и объективным. Описание должно давать достоверную и адекватную картину самого объекта, точно отображать изучаемые явления. Важно, чтобы понятия, используемые для описания, всегда имели четкий и однозначный смысл. При развитии науки, изменении ее основ преобразуются средства описания, часто создается новая система понятий» Назаров И.В. Методология гносеологического исследования. Новосибирск-1982 стр.41 .

При наблюдении отсутствует деятельность, направленная на преобразование, изменение объектов познания. Это обусловливается рядом обстоятельств: недоступностью этих объектов для практического воздействия (например, наблюдение удаленных космических объектов), нежелательностью, исходя из целей исследования, вмешательства в наблюдаемый процесс (фенологические, психологические и др. наблюдения), отсутствием технических, энергетических, финансовых и иных возможностей постановки экспериментальных исследований объектов познания.

По способу проведения наблюдения могут быть непосредственными и опосредованными.

При вепосредствевных наблюдениях те или иные свойства, стороны объекта отражаются, воспринимаются органами чувств человека. Такого рода наблюдения дали немало полезного в истории науки. Известно, например, что наблюдения положения планет и звезд на небе, проводившиеся в течение более двадцати лет Тихо Браге с непревзойденной для невооруженного глаза точностью, явились эмпирической основой для открытия Кеплером его знаменитых законов.

Хотя непосредственное наблюдение продолжает играть немаловажную роль в современной науке, однако чаще всего научное наблюдение бывает опосредованным, т. е. проводится с использованием тех или иных технических средств. Появление и развитие таких средств во многом определило то громадное расширение возможностей метода наблюдений, которое произошло за последние четыре столетия.

Если, например, до начала XVII в. астрономы наблюдали за небесными телами невооруженным глазом, то изобретение Галилеем в 1608 году оптического телескопа подняло астрономические наблюдения на новую, гораздо более высокую ступень. А создание в наши дни рентгеновских телескопов и вывод их в космическое пространство на борту орбитальной станции (рентгеновские телескопы могут работать только за пределами земной атмосферы) позволило проводить наблюдения за такими объектами Вселенной (пульсары, квазары), которые никаким другим путем изучать было бы невозможно.

Развитие современного естествознания связано с повышением роли так называемых косвенных наблюдений. Так, объекты и явления, изучаемые ядерной физикой, не могут прямо наблюдаться ни с помощью органов чувств человека, ни с помощью самых совершенных приборов. Например, при изучении свойств заряженных частиц с помощью камеры Вильсона эти частицы воспринимаются исследователем косвенно -- по таким видимым их проявлениям, как образование треков, состоящих из множества капелек жидкости.

При этом любые научные наблюдения, хотя они опираются в первую очередь на работу органов чувств, требуют в то же время участия и теоретического мышления. Исследователь, опираясь на свои знания, опыт, должен осознать чувственные восприятия и выразить их (описать) либо в понятиях обычного языка, либо -- более строго и сокращенно -- в определенных научных терминах, в каких-то графиках, таблицах, рисунках и т. п. Например, подчеркивая роль теории в процессе косвенных наблюдений, А. Эйнштейн в разговоре с В. Гейзенбергом заметил: «Можно ли наблюдать данное явление или нет -- зависит от вашей теории. Именно теория должна установить, что можно наблюдать, а что нельзя» Гейзенберг В. Теория, критика и философия/Успехи физических наук.1970 стр 303.

Наблюдения могут нередко играть важную эвристическую роль в научном познании. В процессе наблюдений могут быть открыты совершенно новые явления, позволяющие обосновать ту или иную научную гипотезу.

Из всего вышесказанного следует, что наблюдение является весьма важным методом эмпирического познания, обеспечивающим сбор обширной информации об окружающем мире. Как показывает история науки, при правильном использовании этого метода он оказывается весьма плодотворным.

3.3.2 Экперимент

Эксперимент -- более сложный метод эмпирического познания по сравнению с наблюдением. Он предполагает активное, целенаправленное и строго контролируемое воздействие исследователя на изучаемый объект для выявления и изучения тех или иных сторон, свойств, связей. При этом экспериментатор может преобразовывать исследуемый объект, создавать искусственные условия его изучения, вмешиваться в естественное течение процессов.

«В общей структуре научного исследования эксперимент занимает особое место. С одной стороны, именно эксперимент является связующим звеном между теоретическим и эмпирическим этапами и уровнями научного исследования. По своему замыслу эксперимент всегда опосредован предварительным теоретическим знанием: он задумывается на основании соответствующих теоретических знаний и его целью зачастую является подтверждение или опровержение научной теории или гипотезы. Сами результаты эксперимента нуждаются в определенной теоретической интерпретации. Вместе с тем метод эксперимента по характеру используемых познавательных средств принадлежит к эмпирическому этапу познания. Итогом экспериментального исследования прежде всего является достижение фактуального знания и установление эмпирических закономерностей» Алексеев П.В, Панин А.В. «Философия» М-2000 стр.378-379.

Экспериментально ориентированные ученые утверждают, что умно продуманный и «хитро», мастерски поставленный эксперимент выше теории: теория может быть напрочь опровергнута, а достоверно добытый опыт -- нет!

Эксперимент включает в себя другие методы эмпирического исследования (наблюдения, измерения). В то же время он обладает рядом важных, присущих только ему особенностей.

Во-первых, эксперимент позволяет изучать объект в «очищенном» виде, т. е. устранять всякого рода побочные факторы, наслоения, затрудняющие процесс исследования.

Во-вторых, в ходе эксперимента объект может быть поставлен в некоторые искусственные, в частности, экстремальные условия, т. е. изучаться при сверхнизких температурах, при чрезвычайно высоких давлениях или, наоборот, в вакууме, при огромных напряженностях электромагнитного поля и т. п. В таких искусственно созданных условиях удается обнаружить удивительные порой неожиданные свойства объектов и тем самым глубже постигать их сущность.

В-третьих, изучая какой-либо процесс, экспериментатор может вмешиваться в него, активно влиять на его протекание. Как отмечал академик И. П. Павлов, «опыт как бы берет явления в свои руки и пускает в ход то одно, то другое и таким образом в искусственных, упрощенных комбинациях определяет истинную связь между явлениями. Иначе говоря, наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что хочет» Павлов И.П. Полн. Собр. Сочю Т-2 Кн.2 М-1951 стр.274.

В-четвертых, важным достоинством многих экспериментов является их воспроизводимость. Это означает, что условия эксперимента, а соответственно и проводимые при этом наблюдения, измерения могут быть повторены столько раз, сколько это необходимо для получения достоверных результатов.

Подготовка и проведение эксперимента требуют соблюдения ряда условий. Так, научный эксперимент:

-- никогда не ставится наобум, он предполагает наличие четко сформулированной цели исследования;

-- не делается «вслепую», он всегда базируется на каких-то исходных теоретических положениях. Без идеи в голове, говорил И.П.Павлов, вообще не увидишь факта;

-- не проводится беспланово, хаотически, предварительно исследователь намечает пути его проведения;

-- требует определенного уровня развития технических средств познания, необходимого для его реализации;

-- должен проводиться людьми, имеющими достаточно высокую квалификацию.

Только совокупность всех этих условий определяет успех в экспериментальных исследованиях.

В зависимости от характера проблем, решаемых в ходе экспериментов, последние обычно подразделяются на исследовательские и проверочные.

Исследовательские эксперименты дают возможность обнаружить у объекта новые, неизвестные свойства. Результатом такого эксперимента могут быть выводы, не вытекающие из имевшихся знаний об объекте исследования. Примером могут служить эксперименты, поставленные в лаборатории Э. Резерфорда, которые привели к обнаружению ядра атома, а тем самым и к рождению ядерной физики.

Проверочные эксперименты служат для проверки, подтверждения тех или иных теоретических построений. Так, существование целого ряда элементарных частиц (позитрона, нейтрино и др.) было вначале предсказано теоретически, и лишь позднее они были обнаружены экспериментальным путем.

Исходя из методики проведения и получаемых результатов, эксперименты можно разделить на качественные и количественные. Качественные эксперименты носят поисковый характер и не приводят к получению каких-либо количественных соотношений. Они позволяют лишь выявить действие тех или иных факторов на изучаемое явление. Количественные эксперименты направлены на установление точных количественных зависимостей в исследуемом явлении. В реальной практике экспериментального исследования оба указанных типа экспериментов реализуются, как правило, в виде последовательных этапов развития познания.

Как известно, связь между электрическими и магнитными явлениями была впервые открыта датским физиком Эрстедом в результате чисто качественного эксперимента (поместив магнитную стрелку компаса рядом с проводником, через который пропускался электрический ток, он обнаружил, что стрелка отклоняется от первоначального положения). После опубликования Эрстедом своего открытия последовали количественные эксперименты французских ученых Био и Савара, а также опыты Ампера, на основе которых была выведена соответствующая математическая формула.

Все эти качественные и количественные эмпирические исследования заложили основы учения об электромагнетизме.

В зависимости от области научного знания, в которой используется экспериментальный метод исследования, различают естественнонаучный, прикладной (в технических науках, сельскохозяйственной науке и т. д.) и социально-экономический эксперименты.

3.3.3 Измерение и сравнение

Большинство научных экспериментов и наблюдений включает в себя проведение разнообразных измерений. Измерение - это процесс, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явления с помощью специальных технических устройств.

Огромное значение измерений для науки отмечали многие видные ученые. Например, Д. И. Менделеев подчеркивал, что «наука начинается с тех пор, как начинают измерять». А известный английский физик В. Томсон (Кельвин) указывал на то, что «каждая вещь известна лишь в той степени, в какой ее можно измерить» Орнатский П.П. Теоретические основы иформационно-измерительной техники. Киев-1976 стр.7.

В основе операции измерения лежит сравнение «Сравнение представляет собой процесс установления различия и сходства предметов». Спиркин А.Г. объектов по каким-либо сходным свойствам или сторонам. Чтобы осуществить такое сравнение, необходимо иметь определенные единицы измерения, наличие которых дает возможность выразить изучаемые свойства со стороны их количественных характеристик. В свою очередь, это позволяет широко использовать в науке математические средства и создает предпосылки для математического выражения эмпирических зависимостей. Сравнение используется не только в связи с измерением. В науке сравнение выступает как сравнительный или сравнительно-исторический метод. Первоначально возникший в филологии, литературоведении, он затем стал успешно применяться в правоведении, социологии, истории, биологии, психологии, истории религии, этнографии и других областях знания. Возникли целые отрасли знания, пользующиеся этим методом: сравнительная анатомия, сравнительная физиология, сравнительная психология и т.п. Так, в сравнительной психологии изучение психики осуществляется на основе сравнения психики взрослого человека с развитием психики у ребенка, а также животных. В ходе научного сравнения сопоставляются не произвольно выбранные свойства и связи, а существенные.

Важной стороной процесса измерения является методика его проведения. Она представляет собой совокупность приемов, использующих определенные принципы и средства измерений. Под принципами измерений в данном случае имеются в виду какие-то явления, которые положены в основу измерений (например, измерение температуры с использованием термоэлектрического эффекта).

Существует несколько видов измерений. Исходя из характера зависимости измеряемой величины от времени, измерения разделяют на статические и динамические. При статических измерениях величина, которую мы измеряем, остается постоянной во времени (измерение размеров тел, постоянного давления и т. п.). К динамическим относятся такие измерения, в процессе которых измеряемая величина меняется во времени (измерение вибрации, пульсирующих давлений и т. п.).

По способу получения результатов различают измерения прямые и косвенные. В прямых измерениях искомое значение измеряемой величины получается путем непосредственного сравнения ее с эталоном или выдается измерительным прибором. При косвенном измерении искомую величину определяют на основании известной математической зависимости между этой величиной и другими величинами, получаемыми путем прямых измерений (например, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения). Косвенные измерения широко используются в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат.

С прогрессом науки продвигается вперед и измерительная техника. Наряду с совершенствованием существующих измерительных приборов, работающих на основе традиционных утвердившихся принципов (замена материалов, из которых сделаны. детали прибора, внесение в его конструкцию отдельных изменений и т. д.), происходит переход на принципиально новые, конструкции измерительных устройств, обусловленные новыми теоретическими предпосылками. В последнем случае создаются приборы, в которых находят реализацию новые научные. достижения. Так, например, развитие квантовой физики существенно повысило возможности измерений с высокой степенью точности. Использование эффекта Мессбауэра позволяет создать прибор с разрешающей способностью порядка 10-13 % измеряемой величины.

Хорошо развитое измерительное приборостроение, разнообразие методов и высокие характеристики средств измерения способствуют прогрессу в научных исследованиях. В свою очередь, решение научных проблем, как уже отмечалось выше, часто открывает новые пути совершенствования самих измерений.

3.4 Общенаучные методы теоретического познания

3.4.1 Абстрагирование. Восхождение от абстрактного к конкретному

Процесс познания всегда начинается с рассмотрения конкретных, чувственно воспринимаемых предметов и явлений, их внешних признаков, свойств, связей. Только в результате изучения чувственно-конкретного человек приходит к каким-то обобщенным представлениям, понятиям, к тем или иным теоретическим положениям, т. е. научным абстракциям. Получение этих абстракций связано со сложной абстрагирующей деятельностью мышления.

В процессе абстрагирования происходит отход (восхождение) от чувственно воспринимаемых конкретных объектов (со всеми их свойствами, сторонами и т. д.) к воспроизводимым в мышлении абстрактным представлениям о них. При этом чувственно-конкретное восприятие как бы «...испаряется до степени абстрактного определения» Маркс К., Энгельс Ф. Соч. Т-12 стр.727. Абстрагирование, таким образом, заключается в мысленном отвлечении от каких-то -- менее существенных -- свойств, сторон, признаков изучаемого объекта с одновременным выделением, формированием одной или нескольких существенных сторон, свойств, признаков этого объекта. Результат, получаемый в процессе абстрагирования, именуют абстракцией (или используют термин «абстрактное» -- в отличие от конкретного).

В научном познании широко применяются, например, абстракции отождествления и изолирующие абстракции. Абстракция отождествления представляет собой понятие, которое получается в результате отождествления некоторого множества предметов (при этом отвлекаются от целого ряда индивидуальных свойств, признаков данных предметов) и объединения их в особую группу. Примером может служить группировка всего множества растений и животных, обитающих на нашей планете, в особые виды, роды, отряды и т. д. Изолирующая абстракции получается путем выделения некоторых свойств, отношений, неразрывно связанных с предметами материального мира, в самостоятельные сущности («устойчивость», «растворимость», «электропроводность» и т. д.).

Переход от чувственно-конкретного к абстрактному всегда связан с известным упрощением действительности. Вместе с тем, восходя от чувственно-конкретного к абстрактному, теоретическому, исследователь получает возможность глубже понять изучаемый объект, раскрыть его сущность. При этом исследователь вначале находит главную связь (отношение) изучаемого объекта, а затем, шаг за шагом прослеживая, как она видоизменяется в различных условиях, открывает новые связи, устанавливает их взаимодействия и таким путем отображает во всей полноте сущность изучаемого объекта.

Процесс перехода от чувственно-эмпирических, наглядных представлений об изучаемых явлениях к формированию определенных абстрактных, теоретических конструкций, отражающих сущность этих явлений, лежит в основе развития любой науки.

Поскольку конкретное (т. е. реальные объекты, процессы материального мира) есть совокупность множества свойств, сторон, внутренних и внешних связей и отношений, его невозможно познать во всем его многообразии, оставаясь на этапе чувственного познания, ограничиваясь им. Поэтому и возникает потребность в теоретическом осмыслении конкретного, т. е. восхождении от чувственно-конкретного к абстрактному.

Но формирование научных абстракций, общих теоретических положений не является конечной целью познания, а представляет собой только средство более глубокого, разностороннего познания конкретного. Поэтому необходимо дальнейшее движение (восхождение) познания от достигнутого абстрактного вновь к конкретному. Получаемое на этом этапе исследования знание о конкретном будет качественно иным по сравнению с тем, которое имелось на этапе чувственного познания. Другими словами, конкретное в начале процесса познания (чувственно-конкретное, являющееся его исходным моментом) и конкретное, постигаемое в конце познавательного процесса (его называют логически-конкретным, подчеркивая роль абстрактного мышления в его постижении), коренным образом отличаются друг от друга.

Логически-конкретное есть теоретически воспроизведенное в мышлении исследователя конкретное во всем богатстве его содержания.

Оно содержит в себе уже не только чувственно воспринимаемое, но и нечто скрытое, недоступное чувственному восприятию, нечто существенное, закономерное, постигнутое лишь с помощью теоретического мышления, с помощью определенных абстракций.

Метод восхождения от абстрактного к конкретному применяется при построении различных научных теорий и может использоваться как в общественных, так и в естественных науках. Например, в теории газов, выделив основные законы идеального газа -- уравнения Клапейрона, закон Авогадро и т. д., исследователь идет к конкретным взаимодействиям и свойствам реальных газов, характеризуя их существенные стороны и свойства. По мере углубления в конкретное вводятся все новые абстракции, которые выступают в качестве более глубокого отображения сущности объекта. Так, в процессе развития теории газов было выяснено, что законы идеального газа характеризуют поведение реальных газов только при небольших давлениях. Это было вызвано тем, что абстракция идеального газа пренебрегает силами притяжения молекул. Учет этих сил привел к формулировке закона Ван-дер-Ваальса. По сравнению с законом Клапейрона этот закон выразил сущность поведения газов более конкретно и глубоко.

3.4.2 Идеализация. Мысленный эксперимент

Мыслительная деятельность исследователя в процессе научного познания включает в себя особый вид абстрагирования, который называют идеализацией. Идеализация представляет собой мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований.

В результате таких изменений могут быть, например, исключены из рассмотрения какие-то свойства, стороны, признаки объектов. Так, широко распространенная в механике идеализация, именуемая материальной точкой, подразумевает тело, лишенное всяких размеров. Такой абстрактный объект, размерами которого пренебрегают, удобен при описании движения, самых разнообразных материальных объектов от атомов и молекул и до планет Солнечной системы.

Изменения объекта, достигаемые в процессе идеализации, могут производиться также и путем наделения его какими-то особыми свойствами, в реальной действительности неосуществимыми. Примером может служить введенная путем идеализации в физику абстракция, известная под названием абсолютно черного тела (такое тело наделяется несуществующим в природе свойством поглощать абсолютно всю попадающую на него лучистую энергию, ничего не отражая и ничего не пропуская сквозь себя).

Целесообразность использования идеализации определяется следующими обстоятельствами:

Во-первых, «идеализация целесообразна тогда, когда подлежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности математического, анализа, а по отношению к идеализированному случаю можно, приложив эти средства, построить и развить теорию, в определенных условиях и целях эффективную, для описания свойств и поведения этих реальных объектов. Последнее, в сущности, и удостоверяет плодотворность идеализации, отличает ее от бесплодной фантазии» Субботин А.Л. Проблемы логики научного познания. М-1964, стр. 365.

Во-вторых, идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые свойства, связи исследуемого объекта, без которых он существовать не может, но которые затемняют существо протекающих в нем процессов. Сложный объект представляется как бы в «очищенном» виде, что облегчает его изучение.

В-третьих, применение идеализации целесообразно тогда, когда исключаемые из рассмотрения свойства, стороны, связи изучаемого объекта не влияют в рамках данного исследования на его сущность. При этом правильный выбор допустимости подобной идеализации играет очень большую роль.

Следует отметить, что характер идеализации может быть весьма различным, если существуют разные теоретические подходы к изучению какого-то явления. В качестве примера можно указать на три разных понятия «идеального газа», сформировавшихся под влиянием различных теоретико-физических представлений: Максвелла-Больцмана, Бозе-Эйнштейна и Ферми-Дирака. Однако полученные при этом все три варианта идеализации оказались плодотворными при изучении газовых состояний различной природы: идеальный газ Максвелла-Больцмана стал основой исследований обычных молекулярных разреженных газов, находящихся при достаточно высоких температурах; идеальный газ Бозе-Эйнштейна был применен для изучения фотонного газа, а идеальный газ Ферми-Дирака помог решить ряд проблем электронного газа.

Будучи разновидностью абстрагирования, идеализация допускает элемент чувственной наглядности (обычный процесс абстрагирования ведет к образованию мысленных абстракций, не обладающих никакой наглядностью). Эта особенность идеализации очень важна для реализации такого специфического метода теоретического познания, каковым является мысленный эксперимент (его также называют умственным, субъективным, воображаемым, идеализированным).

Мысленный эксперимент предполагает оперирование идеализированным объектом (замещающим в абстракции объект реальный), которое заключается в мысленном подборе тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. В этом проявляется определенное сходство мысленного (идеализированного) эксперимента с реальным. Более того, всякий реальный эксперимент, прежде чем быть осуществленным на практике, сначала «проигрывается» исследователем мысленно в процессе обдумывания, планирования. В этом случае мысленный эксперимент выступает в роли предварительного идеального плана реального эксперимента.

Вместе с тем мысленный эксперимент играет и самостоятельную роль в науке. При этом, сохраняя сходство с реальным экспериментом, он в то же время существенно отличается от него.

В научном познании могут быть случаи, когда при исследовании некоторых явлений, ситуаций, проведение реальных экспериментов оказывается вообще невозможным. Этот пробел в познании может восполнить только мысленный эксперимент.

Научная деятельность Галилея, Ньютона, Максвелла, Карно, Эйнштейна и других ученых, заложивших основы современного естествознания, свидетельствует о существенной роли мысленного эксперимента в формировании теоретических идей. История развития физики богата фактами использования мысленных экспериментов. Примером могут служить мысленные эксперименты Галилея, приведшие к открытию закона инерции. «...Закон инерции, -- писали А. Эйнштейн и Л. Инфельд, -- нельзя вывести непосредственно из эксперимента, его можно вывести умозрительно -- мышлением, связанным с наблюдением. Этот эксперимент никогда нельзя выполнить в действительности, хотя он ведет к глубокому пониманию действительных экспериментов» Эйнштейн А., Инфельд Л. Эволюция физики. М-1966. стр.16.

Мысленный эксперимент может иметь большую эвристическую ценность, помогая интерпретировать новое знание, полученное чисто математическим путем. Это подтверждается многими примерами из истории науки.

Метод идеализации, оказывающийся весьма плодотворным во многих случаях, имеет в то же время определенные ограничения. Кроме того, любая идеализация ограничена конкретной областью явлений и служит для решения только определенных проблем. Это, хорошо видно хотя бы на примере вышеуказанной идеализации «абсолютно черное тело».

Основное положительное значение идеализации как метода научного познания заключается в том, что получаемые на ее основе теоретические построения позволяют затем эффективно исследовать реальные объекты и явления. Упрощения, достигаемые с помощью идеализации, облегчают создание теории, вскрывающей законы исследуемой области явлений материального мира. Если теория в целом правильно описывает реальные явления, то правомерны и положенные в ее основу идеализации.

3.4.3 Формализация

Под формализацией понимается особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов (знаков).

Этот прием заключается в построении абстрактно-математических моделей, раскрывающих сущность изучаемых процессов действительности. При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (формулами). Отношения знаков заменяют собой высказывания о свойствах и отношениях предметов. Таким путем создается обобщенная знаковая модель некоторой предметной области, позволяющая обнаружить структуру различных явлений и процессов при отвлечении от качественных характеристик последних. Вывод одних формул из других по строгим правилам логики и математики представляет формальное исследование основных характеристик структуры различных, порой весьма далеких по своей природе явлений.

Ярким примером формализации являются широко используемые в науке математические описания различных объектов, явлений, основывающиеся на соответствующих содержательных теориях. При этом используемая математическая символика не только помогает закрепить уже имеющиеся знания об исследуемых объектах, явлениях, но и выступает своего рода инструментом в процессе дальнейшего их познания.

Для построения любой формальной системы необходимо: а) задание алфавита, т. е. определенного набора знаков; б) задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы»; в) задание правил, по которым от одних слов, формул данной системы можно переходить к другим словам и формулам (так называемые правила вывода).

В результате создается формальная знаковая система в виде определенного искусственного языка. Важным достоинством этой системы является возможность проведения в ее рамках исследования какого-либо объекта чисто формальным путем (оперирование знаками) без непосредственного обращения к этому объекту.

Другое достоинство формализации состоит в обеспечении краткости и четкости записи научной информации, что открывает большие возможности для оперирования ею.

Разумеется, формализованные искусственные языки не обладают гибкостью и богатством языка естественного. Зато в них отсутствует многозначность терминов (полисемия), свойственная естественным языкам. Они характеризуются точно построенным синтаксисом (устанавливающим правила связи между знаками безотносительно их содержания) и однозначной семантикой (семантические правила формализованного языка вполне однозначно определяют соотнесенность знаковой системы с определенной предметной областью). Таким образом, формализованный язык обладает свойством моносемичности.

Возможность представить те или иные теоретические положения науки в виде формализованной знаковой системы имеет большое значение для познания. Но при этом следует иметь в виду, что формализация той или иной теории возможна только при учете ее содержательной стороны. «Голое математическое уравнение еще не представляет физической теории, чтобы получить физическую теорию, необходимо придать математическим символам конкретное эмпирическое содержание» Васильев С.А. Логика и методология науки. М-1967, стр.133.

Расширяющееся использование формализации как метода теоретического познания связано не только с развитием математики. В химии, например, соответствующая химическая символика, вместе с правилами оперирования ею явилась одним из вариантов формализованного искусственного языка. Все более важное место метод формализации занимал в логике по мере ее развития. Труды Лейбница положили начало созданию метода логических исчислений. Последний привел к формированию в середине XIX в. математической логики, которая во второй половине нашего столетия сыграла важную роль в развитии кибернетики, в появлении электронных вычислительных машин, в решении задач автоматизации производства и т. д.

Язык современной науки существенно отличается от естественного человеческого языка. Он содержит много специальных терминов, выражений, в нем широко используются средства формализации, среди которых центральное место принадлежит математической формализации. Исходя из потребностей науки, создаются различные искусственные языки, предназначенные для решения тех или иных задач. Все множество созданных и создаваемых искусственных формализованных языков входит в язык науки, образуя мощное средство научного познания.

3.4.4 Аксиоматический метод

При аксиоматическом построении теоретического знания сначала задается набор исходных положений, не требующих доказательства (по крайней мере, в рамках данной системы знания). Эти положения называются аксиомами, или постулатами. Затем из них по определенным правилам строится система выводных предложений. Совокупность исходных аксиом и выведенных на их основе предложений образует аксиоматически построенную теорию.

Аксиомы -- это утверждения, доказательства истинности которых не требуется. Число аксиом варьируется в широких границах: от двух-трех до нескольких десятков. Логический вывод позволяет переносить истинность аксиом на выводимые из них следствия. При этом к аксиомам и выводам из них предъявляются требования непротиворечивости, независимости и полноты. Следование определенным, четко зафиксированным правилам вывода позволяет упорядочить процесс рассуждения при развертывании аксиоматической системы, сделать это рассуждение более строгим и корректным.

Чтобы задать аксиоматической систему, требуется некоторый язык. В этой связи широко используют символы (значки), а не громоздкие словесные выражения. Замена разговорного языка логическими и математическими символами, как было указано выше, называется формализацией. Если формализация имеет место, то аксиоматическая система является формальной, а положения системы приобретают характер формул. Получаемые в результате вывода формулы называются теоремами, а используемые при этом аргументы -- доказательствами теорем. Такова считающаяся чуть ли не общеизвестной структура аксиоматического метода.

3.4.5 Метод гипотезы.

В методологии термин «гипотеза» используется в двух смыслах: как форма существования знания, характеризующаяся проблематичностью, недостоверностью, нуждаемостью в доказательстве, и как метод формирования и обоснования объяснительных предложений, ведущий к установлению законов, принципов, теорий. Гипотеза в первом смысле слова включается в метод гипотезы, но может употребляться и вне связи с ней.

Лучше всего представление о методе гипотезы дает ознакомление с его структурой. Первой стадией метода гипотезы является ознакомление с эмпирическим материалом, подлежащим теоретическому объяснению. Первоначально этому материалу стараются дать объяснение с помощью уже существующих в науке законов и теорий. Если таковые отсутствуют, ученый переходит ко второй стадии -- выдвижению догадки или предположения о причинах и закономерностях данных явлений. При этом он старается пользоваться различными приемами исследования: индуктивным наведением, аналогией, моделированием и др. Вполне допустимо, что на этой стадии выдвигается несколько объяснительных предположений, несовместимых друг с другом.

Третья стадия есть стадия оценки серьезности предположения и отбора из множества догадок наиболее вероятной. Гипотеза проверяется прежде всего на логическую непротиворечивость, особенно если она имеет сложную форму и разворачивается в систему предположений. Далее гипотеза проверяется на совместимость с фундаментальными интертеоретическими принципами данной науки.

На четвертой стадии происходит разворачивание выдвинутого предположения и дедуктивное выведение из него эмпирически проверяемых следствий. На этой стадии возможна частичная переработка гипотезы, введение в нее с помощью мысленных экспериментов уточняющих деталей.

На пятой стадии проводится экспериментальная проверка выведенных из гипотезы следствий. Гипотеза или получает эмпирическое подтверждение, или опровергается в результате экспериментальной проверки. Однако эмпирическое подтверждение следствий из гипотезы не гарантирует ее истинности, а опровержение одного из следствий не свидетельствует однозначно о ее ложности в целом. Все попытки построить эффективную логику подтверждения и опровержения теоретических объяснительных гипотез пока не увенчались успехом. Статус объясняющего закона, принципа или теории получает лучшая по результатам проверки из предложенных гипотез. От такой гипотезы, как правило, требуется максимальная объяснительная и предсказательная сила.

Знакомство с общей структурой метода гипотезы позволяет определить ее как сложный комплексный метод познания, включающий в себя все многообразие его и форм и направленный на установление законов, принципов и теорий.

Иногда метод гипотезы называют еще гипотетико-дедуктивным методом, имея в виду тот факт, что выдвижение гипотезы всегда сопровождается дедуктивным выведением из него эмпирически проверяемых следствий. Но дедуктивные умозаключения -- не единственный логический прием, используемый в рамках метода гипотезы. При установлении степени эмпирической подтверждаемости гипотезы используются элементы индуктивной логики. Индукция используется и на стадии выдвижения догадки. Существенное место при выдвижении гипотезы имеет умозаключение по аналогии. Как уже отмечалось, на стадии развития теоретической гипотезы может использоваться и мысленный эксперимент.


Подобные документы

  • Проблема познания в философии. Понятие и сущность обыденного познания. Рациональность обыденного познания: здравый смысл и рассудок. Научное познание его структура и особенности. Методы и формы научного познания. Основные критерии научного познания.

    реферат [26,3 K], добавлен 15.06.2017

  • Понятие и содержание научного познания, его специфика и строение, элементы. Методы и методология познания. Общенаучные методы эмпирического и теоретического познания. Этапы познавательного цикла и формы научного познания. Научная теория и ее структура.

    контрольная работа [18,7 K], добавлен 30.12.2010

  • Понятие, сущность и предмет методологии. Понятие "метода", основные типы методов и их взаимосвязь. Методы научного познания. Основные методы эмпирического и теоретического познания. Проблемы методологии и пути их решения. Важнейшие задачи методологии.

    контрольная работа [29,6 K], добавлен 11.11.2010

  • Специфика и уровни научного познания. Творческая деятельность и развитие человека. Методы научного познания: эмпирические и теоретические. Формы научного познания: проблемы, гипотезы, теории. Важность наличия философских знаний.

    реферат [42,4 K], добавлен 29.11.2006

  • Познание как предмет философского анализа. Структура познания, ключевые теории истины. Научное познание, его уровни и формы. Практика как критерий истины. Понятие метода и методологии научного познания. Основные проблемы современной философии науки.

    презентация [110,5 K], добавлен 20.05.2015

  • Научное познание и его структура. Термин "знание". Субъект и объект познания. Понятие метода. Общелогические приемы познания. Эмпирические и теоретические методы научного исследования. Ощущение. Восприятие. Представление. Мышление.

    контрольная работа [15,5 K], добавлен 08.02.2007

  • Научное познание и его уровни. Формы научного познания. Методы научного познания. Эмпирический и теоретический уровни познания. Достоверность знания - необходимое условие его превращения в факт. Научная идея. Мыслительный эксперимент.

    реферат [17,9 K], добавлен 24.04.2007

  • Научное знание как достоверное, логически непротиворечивое знание. Содержание социогуманитарного познания. Научное познание и функции научной теории. Структура научного объяснения и предсказания. Формы научного познания, его основные формулы и методики.

    контрольная работа [24,7 K], добавлен 28.01.2011

  • Эмпирический и теоретический уровни научного познания, их единство и различие. Понятие научной теории. Проблема и гипотеза как формы научного поиска. Динамика научного познания. Развитие науки как единство процессов дифференциации и интеграции знания.

    реферат [25,3 K], добавлен 15.09.2011

  • Понятие научного познания, научное и вненаучное знание. Проблема взаимоотношения философии, знания и языка в позитивизме, основные этапы его развития. Проблема происхождения человека в философии и науке. Названия философских течений в теории познания.

    контрольная работа [36,9 K], добавлен 10.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.