Effect of Salvia officinalis and S. sclarea on rats with a high-fat hypercaloric diet

Phytotherapy is widely used to correct overweight. A comprehensive study of herbal preparations on the body of model animals has been carried out for only a few plant species. Supplementation of the diet of rats with closely related species of sage.

Рубрика Медицина
Вид статья
Язык английский
Дата добавления 09.05.2022
Размер файла 257,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

The influence of sage and medicinal preparations made with it on the nervous system attracts considerable interest of researchers (Cavalcante et al., 2018; Dinel et al., 2020). Ther study revealed significant neuroprotection in the MTT assay by 39.5% and inhibition ofintracellular ROS by 61.4% caused by eighty percent methanol extracts of S. sclarea in 100 pg/mL concentration (Tavakkoli et al., 2014). In the future, researchers may discover new natural therapeutic agents for treating disorders such as Alzheimer and Parkinson diseases (Tavakkoli et al., 2014). A group of female patients exposed to vapours of S. sclarea essential oil were observed to have a significant decreases in systolic blood pressure, diastolic blood pressure and respiratory rate compared with the control (Seol et al., 2013). Inhaling S. sclarea essential oil statistically significantly reduced the respiratory rate.

Salvia sclarea oil contains two times more omega-3 fatty acids than other Salvia species, which take part in eicosanoid synthesis and contain significant levels of monoterpane linalool, a psychoactive ingredient (Gross et al., 2013). In dominant mice, pregnant mothers of which received S. sclarea oil-enriched food from the date of conception, dominant and anxiety behaviour significantly decreased, compared with their counterparts treated with sunflower oil. A similar tendency and a prominent reduction in blood corticosterone levels were seen in submissive mice treated with S. sclarea oil (Gross et al., 2013). These data and findings confirm the hypothesis that S. sclarea oil has anxiolytic properties.

In the study, where rats were intraperitoneally injected or inhaled essential oils (Seol et al., 2010), 5% (v/v) S. sclarea oil had the strongest antistress effect in rats during the forced swim test. However, pre-treatment with buspirone (a 5-HT1A agonist), SCH-23390 (a D-1 receptor antagonist) and haloperidol (a D-2, D-3, and D-4 receptor antagonist) significantly blocked the anti-stress effect of S. sclarea oil (Seol et al., 2010). The antidepressant-like effect taken by oil from S. sclarea oil is related to the modulation of the dopaminergic pathway.

In our study, the behavioural responses of rats from the experimental groups which consumed dry crushed sage shoots with high-fat diet had changed by the end of the experiment compared with the control group. Thus, consuming S. officinalis caused only significant decrease in rats' physical activity. At the same time, S. sclarea caused decrease of physical activity at the level of tendency, significant decrease in orientational activity, and decrease in the emotional status of experimental animals.

Therefore, further research will be aimed at studying the effects of different doses of extracts from these medicinal plants (S. officinalis and S. sclarea) on the organism of laboratory animals during various metabolic disorders at the tissue, cellular and subcellular levels.

Conclusions

The addition of closely related sage species from the same genus (Salvia officinalis L. and S. sclarea L.) to the food of rats caused multidirectional changes in their metabolism. The addition of S. officinalis to the diet led to sharp increase in body weight (up to 130.8% of the initial weight for 30 days of the experiment). The body weight of the rats that had been treated with S. sclarea increased only by 103.8% of their initial weight and was lower than in the control group. Oil from S. officinalis increased daily weight gain up to 1771 pg/day (253.1% of the control group), and S. sclarea - decreased it to 194 pg/day (27.8% of the control group). In the group that had received S. officinalis, the relative weight of the brain (77.7% of control), spleen (80.4%), and thymus (59.1%) decreased. In the group treated with S. sclarea, the relative weight of the thymus decreased (43.4%) and the relative weight of the colon increased (159.7% to the control group).

Under the influence of S. officinalis, the concentrations of urea (78.3%), total bilirubin (59.5%) and triglycerides (67.1%) decreased, and the concentration of total protein (109.8%) and the activity of alkaline phosphatase (435.1% of control) increased. Consumption of S. sclarea shoots increased the activity of alkaline phosphatase (276.5%), drastically decreases the atherogenic index (23.1% of the level of the control group) as a result of increasing the concentration of high density lipoprotein cholesterol (286.9%) and decreasing the concentration of low density lipoprotein cholesterol (67.7%). Also, in rats that had received S. sclarea, we observed increase in the concentration of cholesterol (128.5%) and decrease in the concentration of triglycerides (39.9%), decrease in the activity of gamma-glutamyl transferase (62.8%) and increase in the Ca/P ratio (up to 132.5% of the control group). No significant changes were observed in CBC and WBC differential of male rats that consumed S. officinalis and S. sclarea shoots.

According to the results of the open field test, the physical and orientational activity ofmale rats under the influence of S. officinalis significantly decreased by the end of the experiment. Emotional status of rats, on the contrary, decreased when they ate S. sclarea dry crushed shoots in the composition of their food.

Thus, excess body weight against the background of hypercaloric diet in rats led, in general, to more pronounced deviations from the norm when the animals ate S. officinalis dry crushed shoots. And vice versa, the addition of dry crushed shoots of S. sclarea to the diet of animals normalized body weight in comparison with the control group, and reduced the negative manifestations of obesity at the biochemical and organismal levels. According to these results, the substances contained in S. sclarea should be carefully studied for anti-atherosclerotic activity, and tea supplemented with S. sclarea shoots can be recommended as a corrective supplement in the diet of overweight people.

References

1. Abu-Odeh, A. M., & Talib, W. H. (2021). Middle East medicinal plants in the treatment of diabetes: A review. Molecules, 26(3), 742.

2. Agadzhanyan, A. A. (2015). Hypoglycemic and hypolipidemic activity of the leaf extract of Salvia officinalis L. Eurasian Union of Scientists, Series: Medical, Biological and Chemical Sciences, 12(21), 5-8.

3. AlMotwaa, S. M., Alkhatib, M. H., & Alkreathy, H. M. (2020). Incorporating ifosfamide into Salvia oil-based nanoemulsion diminishes its nephrotoxicity in mice inoculated with tumor. BioImpacts, 10(1), 9-16.

4. Bassil, M., Daher, C. F., Mroueh, M., & Zeeni, N. (2015). Salvia libanotica improves glycemia and serum lipid profile in rats fed a high fat diet. BMC Complementary and Alternative Medicine, 15, 384.

5. Ben Khedher, M. R., Hammami, M., Arch, J., Hislop, D. C., Eze, D., Wargent, E. T., Kypczynska, M. A., & Zaibi, M. S. (2018). Preventive effects of Salvia officinalis leaf extract on insulin resistance and inflammation in a model of high fat diet- induced obesity in mice that responds to rosiglitazone. PeerJ, 6, e4166.

6. Bibi, M., Choudhary, M. I., & Yousuf, S. (2020). Crystal structure and hirshfeld surface analysis of the methanol solvate of sclareol, a labdane-type diterpenoid. Acta Crystallographica Section E - Crystallographic Communications, 76, 294. Bilan, M. V., Lieshchova, M. A., Tishkina, N. M., & Brygadyrenko, V. V. (2019). Combined effect of glyphosate, saccharin and sodium benzoate on the gut microbiota of rats. Regulatory Mechanisms in Biosystems, 10(2), 228-232.

7. Boyko, A. A., & Brygadyrenko, V. V. (2016). Influence of water infusion of medicinal plants on larvae of Strongyloides papillosus (Nematoda, Strongyloididae). Visnyk ofDnipropetrovsk University, Biology, Ecology, 24(2), 519-525. Bozok, F., & Ulukanli, Z. (2016). Volatiles from the aerial parts of east mediterranean clary sage: Phytotoxic activity. Journal of Essential Oil Bearing Plants, 19(5), 1192-1198.

8. Brygadyrenko, V. V., Lieshchova, M. A., Bilan, M. V., Tishkina, N. M., & Horcha- nok, A. V. (2019). Effect of alcohol tincture of Aralia elata on the organism of rats and their gut microbiota against the background of excessive fat diet. Regulatory Mechanisms in Biosystems, 10(4), 497-506.

9. Cavalcante E Costa, G. F., Nishijo, H., Caixeta, L. F., & Aversi-Ferreira, T. A. (2018). The confrontation between ethnopharmacology and pharmacological tests of medicinal plants associated with mental and neurological disorders. Evidence-Based Complementary and Alternative Medicine, 2018, 7686913.

10. Cerri, G. C., Lima, L. C. F., Lelis, D. D., Barcelos, L. D., Feltenberger, J. D., Mussi, S. V., Monteiro, R. S., dos Santos, R. A. S., Ferreira, L. A. M., & Santos, S. H. S. (2019). Sclareol-loaded lipid nanoparticles improved metabolic profile in obese mice. Life Sciences, 218, 292-299.

11. Ceschel, G. C., Maffei, P., Moretti, M. D. L., Peana, A. T., & Demontis, S. (1998). In vitro permeation through porcine buccal mucosa of Salvia sclarea L. essential oil from topical formulations. STP Pharma Sciences, 8(2), 103-106.

12. Chen, Q., Tang, K., & Guo, Y. (2020). Discovery of sclareol and sclareolide as filovirus entry inhibitors. Journal of Asian Natural Products Research, 22(5), 464-473.

13. Cui, H. Y., Zhang, X. J., Zhou, H., Zhao, C. T., & Lin, L. (2015). Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Botanical Studies, 56, 16.

14. Dinel, A. L., Lucas, C., Guillemet, D., Layй, S., Pallet, V., & Jofre, C. (2020). Chronic supplementation with a mix of Salvia officinalis and Salvia larnndulaefolia improves morris water maze learning in normal adult C57Bl/6J mice. Nutrients, 12(6), 1777.

15. Dogan, H. (2020). Minerals and bioactive content of some Salvia species in cultivated condition. Comptes Rendus de L Academie Bulgare des Sciences, 73(10), 1398-1408.

16. Durgha, H., Thirugnanasampandan, R., Ramya, G., & Ramanth, M. G. (2016). Inhibition of inducible nitric oxide synthase gene expression (iNOS) and cytotoxic activity of Salvia sclarea L. essential oil. Journal of King Saud University Science, 28(4), 390-395.

17. Ekin, H. N., Deliorman Orhan, D., Erdocan Orhan, I., Orhan, N., & Aslan, M. (2019). Evaluation of enzyme inhibitory and antioxidant activity of some La- miaceae plants. Journal of Research in Pharmacy, 23(4), 749-758.

18. El-Gohary, A. E., Amer, H. M., Salama, A. B., Wahba, H. E., & Khalid, K. A. (2020). Characterization of the essential oil components of adapted Salvia scla- rea L. (clary sage) plant under Egyptian environmental conditions. Journal of Essential Oil Bearing Plants, 23(4), 788-794.

19. El-Shafei, S. M. A., Abd El-Rahman, A. A., Tukhbatova, R. I., Ivanova, E. V., Akinina, E. A., Voronkova, Y. E., Bukuru, L. K., Fattakhova, A. N., Alimova, F. K. (2013). Effect of plant oils Nigella sativa and Salvia officinalis on the biochemical indices of CD-1 mice. Scientific Notes of Kazan University, 155(3), 82-89.

20. Erisen, S., Kurt-Gur, G., & Servi, H. (2020). In vitro propagation of Salvia sclarea L. by meta-topolin, and assessment of genetic stability and secondary metabolite profiling of micropropagated plants. Industrial Crops and Products, 157, 112892.

21. Fiore, G., Nencini, C., Cavallo, F., Capasso, A., Bader, A., Giorgi, G., & Micheli, L. (2006). In vitro antiproliferative effect of six Salvia species on human tumor cell lines. Phytotherapy Research, 20(8), 701-703.

22. Firuzi, O., Miri, R., Asadollahi, M., Eslami, S., & Jassbi, A. R. (2013). Cytotoxic, antioxidant and antimicrobial activities and phenolic contents of eleven Salvia species from Iran. Iranian Journal of Pharmaceutical Research, 12(4), 801-810.

23. Francik, S., Francik, R, Sadowska, U., Bystrowska, B., Zawislak, A., Knapczyk, A., & Nzeyimana, A. (2020). Identification of phenolic compounds and determination of antioxidant activity in extracts and infusions of Salvia leaves. Materials, 13(24), 5811.

24. Fraternale, D., Giamperi, L., Bucchini, A., Ricci, D., Epifano, F., Genovese, S., & Curini, M. (2005). Composition and antifungal activity of essential oil of Salvia sclarea from Italy. Chemistry of Natural Compounds, 41(5), 604-606.

25. Ghowsi, M., Yousofvand, N., & Moradi, S. (2020). Effects of Salvia officinalis L. (common sage) leaves tea on insulin resistance, lipid profile, and oxidative stress in rats with polycystic ovary: An experimental study. Avicenna Journal of Phytomedicine, 10(3), 263-272.

26. Grigoriadou, K., Trikka, F. A., Tsoktouridis, G., Krigas, N., Sarropoulou, V., Papa- nastasi, K., Maloupa, E., & Makris, A. M. (2020). Micropropagation and cultivation of Salvia sclarea for essential oil and sclareol production in Northern Greece. In Vitro Cellular and Developmental Biology - Plant, 56(1), 51-59.

27. Gross, M., Nesher, E., Tikhonov, T., Raz, O., & Pinhasov, A. (2013). Chronic food administration of Salvia sclarea oil reduces animals' anxious and dominant behavior. Journal of Medicinal Food, 16(3), 216-222.

28. Gunnewich, N., Higashi, Y., Feng, X. H., Choi, K. B., Schmidt, J., & Kutchan, T. M. (2013). A diterpene synthase from the clary sage Salvia sclarea catalyzes the cyclization of geranylgeranyl diphosphate to (8R)-hydroxy-copalyl diphosphate. Phytochemistry, 91, 93-99.

29. Hamidpour, M., Hamidpour, R., Hamidpour, S., & Shahlari, M. (2014). Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. Journal of Traditional and Complementary Medicine, 4(2), 82-88.

30. Han, S. H., Hur, M. H., Buckle, J., Choi, J., & Lee, M. S. (2006). Effect of aromatherapy on symptoms of dysmenorrhea in college students: A randomized placebocontrolled clinical trial. Journal of Alternative and Complementary Medicine, 12(6), 535-541.

31. Hanganu, D., Olah, N. K., Pop, C. E., Vlase, L., Oniga, I., Ciocarlan, N., Matei, A., Puscas, C., Silaghi-Dumitrescu, R., & Benedec, D. (2019). Evaluation of poly- phenolic profile and antioxidant activity for some Salvia species. Farmacia, 67(5), 801-805.

32. Hudz, N., Yezerska, O., Shanaida, M., Sedlackova, V. H., & Wieczorek, P. P. (2019). Application of the Folin-Ciocalteu method to the evaluation of Salvia sclarea extracts. Pharmacia, 66(4), 209-215.

33. Jakovljevic, M., Jokic, S., Molnar, M., Jasic, M., Babic, J., Jukic, H., & Banjari, I. (2019). Bioactive profile of various Salvia officinalis L. preparations. Plants, 8(3), 55.

34. Jasicka-Misiak, I., Poliwoda, A., Petecka, M., Buslovych, O., Shlyapnikov, V. A., & Wieczorek, P. P. (2018). Antioxidant phenolic compounds in Salvia officinalis L. and Salvia sclarea L. Ecological Chemistry and Engineering, 25(1), 133-142.

35. Jia, M. R, O'Brien, T. E., Zhang, Y., Siegel, J. B., Tantillo, D. J., & Peters, R J. (2018). Changing face: A key residue for the addition of water by sciareol synthase. ACS Catalysis, 8(4), 3133-3137.

36. Jin, H. M., Shao, Z. X., Wang, Q. Q., Miao, J. S., Bai, X. Q., Liu, Q., Qiu, H., Wang,

37. , Zhang, Z. J., Jennifer, T., Wang, X. Y., & Xu, J. K. (2019). Sclareol prevents ovariectomy-induced bone loss in vivo and inhibits osteoclastogenesis in vitro via suppressing NF-kappa B and MAPK/ERK signaling pathways. Food and Function, 10(10), 6556-6567.

38. Karayel, H. B. (2020). Effect of natural boron mineral use on the essential oil ratio and components of musk sage (Salvia sclarea L.). Open Chemistry, 18(1), 732-739.

39. Karayel, H. B., & Akcura, M. (2019). Examination of the changes in components of the volatile oil from Abyssinian sage, musk sage and medical sage [Salvia ae- thiopis L., Salvia sclarea L. and Salvia officinalis L. (hybrid)] growing in different locations. Grasas y Aceites, 70(3), e319.

40. Kosti, M., Kitic, D., Petrovic, M. B., Jevtovic-Stoimenov, T., Jovic, M., Petrovic, A., & Zivanovic, S. (2017). Anti-inflammatory effect of the Salvia sclarea L. etha- nolic extract on lipopolysaccharide-induced periodontitis in rats. Journal of Eth- nopharmacology, 199, 52-59.

41. Kostova, I., Lasheva, V., Fidan, H., Georgieva, D., Damyanova, S., & Stoyanova, A. (2020). Effect of clary sage (Salvia sclarea L.) essential oil on paper packaging materials. Ukrainian Food Journal, 9(2), 287-297.

42. Kuzma, L., Derda, M., Hadas, E., & Wysokinska, H. (2015). Abietane diterpenoids from Salvia sclarea transformed roots as growth inhibitors of pathogenic Acan- thamoeba spp. Parasitology Research, 114(1), 323-327.

43. Lieshchova, M. A., & Brygadyrenko, V. V. (2021). Influence of Lavandula angusti- folia, Melissa officinalis and Vitex angus-castus on the organism of rats fed with excessive fat-containing diet. Regulatory Mechanisms in Biosystems, 12(1), 169-180.

44. Lieshchova, M. A., Bilan, M. V., Bohomaz, A. A., Tishkina, N. M., & Brygadyren- ko, V. V. (2020). Effect of succinic acid on the organism of mice and their intestinal microbiota against the background of excessive fat consumption. Regulatory Mechanisms in Biosystems, 11(2), 153-161.

45. Lieshchova, M. A., Brygadyrenko, V. V., Tishkina, N. M., Gavrilin, P. M., & Boho- maz, A. A. (2019). Impact of polyvinyl chloride, polystyrene, and polyethylene on the organism of mice. Regulatory Mechanisms in Biosystems, 10(1), 50-55.

46. Lieshchova, M. A., Tishkina, N. M., Bohomaz, A. A., Gavrilin, P. M., & Brygady- renko, V. V. (2018). Combined effect of glyphosphate, saccharin and sodium benzoate on rats. Regulatory Mechanisms in Biosystems, 9(4), 591-597.

47. Loizzo, M. R., Abouali, M., Salehi, P., Sonboli, A., Kanani, M., Menichini, F., & Tundis, R. (2014). In vitro antioxidant and antiproliferative activities of nine Salvia species. Natural Product Research, 28(24), 2278-2285.

48. Mahboubi, M. (2020). Clary sage essential oil and its biological activities. Advances in Traditional Medicine, 20(4), 517-528.

49. Medeiros, A., Bianchi, S., Calvete, J. J., Balter, G., Bay, S., Robles, A., Cantacuzene,

50. , Nimtz, M., Alzari, P. M., & Osinaga, E. (2000). Biochemical and functional characterization of the Tn-specific lectin from Salvia sclarea seeds. European Journal of Biochemistry, 267(5), 1434-1440.

51. Miliauskas, G., Venskutonis, P. R., & van Beek, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85(2), 231-237.

52. Mitic, M., Zrnic, A., Wanner, J., & Stappen, I. (2020). Clary sage essential oil and its effect on human mood and pulse rate: An in vivo pilot study. Planta Medica, 86(15), 1125-1132.

53. Monsefi, M., Abedian, M., Azarbahram, Z., & Ashraf, M. J. (2015). Salvia officinalis L. induces alveolar bud growing in adult female rat mammary glands. Avicenna Journal of Phytomedicine, 5(6), 560-567.

54. Monsefi, M., Nadi, A., & Alinejad, Z. (2017). The effects of Salvia officinalis L. on granulosa cells and in vitro maturation of oocytes in mice. International Journal of Reproductive Biomedicine, 15(10), 649-660.

55. Noori, S., Hassan, Z. M., & Salehian, O. (2013). Sclareol reduces CD4+ CD25+ FoxP3+ T-reg cells in a breast cancer model in vivo. Iranian Journal of Immunology, 10(1), 10-21.

56. Noori, S., Hassan, Z. M., Mohammadi, M., Habibi, Z., Sohrabi, N., & Bayanolhagh, S. (2010). Sclareol modulates the Treg intra-tumoral infiltrated cell and inhibits tumor growth in vivo. Cellular Immunology, 263(2), 148-153.

57. Palchykov, V. A., Zazharskyi, V. V., Brygadyrenko, V. V., Davydenko, P. O., Kuli- shenko, O. M., Borovik, I. V., Chumak, V., Kryvaya, A., & Boyko, O. O. (2019). Bactericidal, protistocidal, nematodicidal properties and chemical composition of ethanol extract of Punica granatum peel. Biosystems Diversity, 27(3), 300-306.

58. Peana, A. T., Moretti, M. D. L., & Juliano, C. (1999). Chemical composition and antimicrobial action of the essential oils of Salvia desoleana and S. sclarea. Planta Medica, 65(8), 752-754.

59. Pereira, A., Banegas-Luna, A. J., Pena-Garcia, J., Pйrez-Sanchez, H., & Apostolides, Z. (2019). Evaluation of the anti-diabetic activity of some common herbs and spices: Providing new insights with inverse virtual screening. Molecules, 24(22), 4030.

60. Pitarokili, D., Couladis, M., Petsikos-Panayotarou, N., & Tzakou, O. (2002). Composition and antifungal activity on soil-borne pathogens of the essential oil of Salvia sclarea from Greece. Journal of Agricultural and Food Chemistry, 50(23), 6688-6691.

61. Pop, A. V., Tofana, M., Socaci, S. A., Pop, C., Rotar, A. M., Nagy, M., & Salanta, L. (2016). Determination of antioxidant capacity and antimicrobial activity of selected Salvia species. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca - Food Science and Technology, 73(1), 14-18.

62. Raafat, K., & Habib, J. (2018). Phytochemical compositions and antidiabetic potentials of Salvia sclarea L. essential oils. Journal of Oleo Science, 67(8), 1015-1025.

63. Rozalski, M., Kuzma, L., Krajewska, U., & Wysokinska, H. (2006). Cytotoxic and proapoptotic activity of diterpenoids from in vitro cultivated Salvia sclarea roots. Studies on the leukemia cell lines. Zeitschrift Fur Naturforschung Section C - A Journal of Biosciences, 61, 483-488.

64. Salehi, B., Ata, A., V Anil Kumar, N., Sharopov, F., Ramirez-Alarcon, K., Ruiz- Ortega, A., Abdulmajid Ayatollahi, S., Tsouh Fokou, P. V., Kobarfard, F., Ami- ruddin Zakaria, Z., Iriti, M., Taheri, Y., Martorell, M., Sureda, A., Setzer, W. N., Durazzo, A., Lucarini, M., Santini, A., Capasso, R., Ostrander, E. A., Ur-Rah- man, A., Choudhary, M. I., Cho, W. C., & Sharifi-Rad, J. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551.

65. Seol, G. H., Lee, Y. H., Kang, P., You, J. H., Pak M., & Min, S. S. (2013). Randomized controlled trial for Salvia sclarea or Lavandula angustifolia: Differential effects on blood pressure in female patients with urinary incontinence undergoing urodynamic examination. Journal of Alternative and Complementary Medicine, 19(7), 664-670.

66. Seol, G. H., Shim, H. S., Kim, P. J., Moon, H. K., Lee, K. H., Shim, I., Suh, S. H., & Min, S. S. (2010). Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats. Journal of Ethnopharmacology, 130(1), 187-190.

67. Tavakkoli, M., Miri, R., Jassbi, A. R., Erfani, N., Asadollahi, M., Ghasemi, M., Saso, L., & Firuzi, O. (2014). Carthamus, Salvia and Stachys species protect neuronal cells against oxidative stress-induced apoptosis. Pharmaceutical Biology, 52(12), 1550-1557.

68. Tkachuk, V. G., & Shapoval, V. V. (1987). The effect of Salvia sclarea ether oil on the immunological and enzymatic systems. Vrachebnoe Delo, 5, 83-84.

69. Toghyani, M., Akhavan, M. I., & Aghdam, S. H. (2012). Effect of sage powder (Salvia officinalis L.) on serum biochemistry and immunity of broiler chicks. Reviews on Clinical Pharmacology and Drug Therapy, 10(2), 107.

70. Tuttolomondo, T., Iapichino, G., Licata, M., Virga, G., Leto, C., & La Bella, S. (2020). Agronomic evaluation and chemical characterization of Sicilian Salvia sclarea L. accessions. Agronomy, 10(8), 1114.

71. Ulubelen, A., Topcu, G., Eris, C., Sonmez, U., Kartal, M., Kurucu, S., & Bozokjo- hansson, C. (1994). Terpenoids from Salvia sclarea. Phytochemistry, 36(4), 971-974.

72. Vaccaro, M. C., Alfieri, M., De Tommasi, N., Moses, T., Goossens, A., & Leone, A. (2020). Boosting the synthesis of pharmaceutically active abietane diterpenes in S. sclarea hairy roots by engineering the GGPPS and CPPS genes. Frontiers in Plant Science, 11, 924.

73. Vaccaro, M., Bernal, V. O., Malafronte, N., De Tommasi, N., & Leone, A. (2019). High yield of bioactive abietane diterpenes in Salvia sclarea hairy roots by overexpressing cyanobacterial DXS or DXR genes. Planta Medica, 85, 973-980.

74. Vega, N., & Perez, G. (2006). Isolation and characterisation of a Salvia bogotensis seed lectin specific for the Tn antigen. Phytochemistry, 67(4), 347-355.

75. Vergine, M., Nicoli, F., Negro, C., Luvisi, A., Nutricati, E., Accogli, R. A., Sabena,

76. , & Miceli, A. (2019). Phytochemical profiles and antioxidant activity of Salvia species from Southern Italy. Records of Natural Products, 13(3), 205-215.

77. Wong, J., Chiang, Y. F., Shih, Y. H., Chiu, C. H., Chen, H. Y., Shieh, T. M., Wang, K. L., Huang, T. C., Hong, Y. H., & Hsia, S. M. (2020). Salvia sclarea L. essential oil extract and its antioxidative phytochemical sclareol inhibit oxytocin-induced uterine hypercontraction dysmenorrhea model by inhibiting the Ca2^-MLCK- MLC20 signaling cascade: An ex vivo and in vivo study. Antioxidants, 9(10), 991.

78. Wu, A. M. (2005). Lectinochemical studies on the glyco-recognition factors of a Tn (GalNAc alpha 1 -> Ser/Thr) specific lectin isolated from the seeds of Salvia sclarea). Journal of Biomedical Science, 12(1), 167-184.

79. Yang, H. J., Kim, K. Y., Kang, P., Lee, H. S., & Seol, G. H. (2014). Effects of Salvia sclarea on chronic immobilization stress induced endothelial dysfunction in rats. BMC Complementary and Alternative Medicine, 14, 396.

80. Zazharskyi, V. V., Davydenko, P. О., Kulishenko, O. М., Borovik, I. V., & Brygady- renko, V. V. (2019). Antimicrobial activity of 50 plant extracts. Biosystems Diversity, 27(2), 163-169.

81. Zivkovic, J., Ristic, M., Kschonsek, J., Westphal, A., Mihailovic, M., Filipovic, V., & Bohm, V. (2017). Comparison of chemical profile and antioxidant capacity of seeds and oils from Salvia sclarea and Salvia officinalis. Chemistry and Biodiversity, 14(12), e1700344.

Размещено на Allbest.ru


Подобные документы

  • Methods of making Herbal Oils. Pain Herbs For Natural Relief. Salicin, Olive, Almond Oil, Lavender oil, Castor Oil, Jojoba oil, Safflower oil, Grapeseed oil, Hemp seed oil. Healing herbal oils. Herbal teas, tinctures, extracts and topical pain relievers.

    презентация [800,0 K], добавлен 06.03.2013

  • 8 bad habits that reduce youth and life. Effect of nicotine to the brain, nervous system and the associated excess sweating. The composition of tobacco smoke. Closely relation of sport and health. The harm of smoking for women, the human psyche.

    презентация [777,7 K], добавлен 07.11.2014

  • The major pathogens and symptoms of cholera - an acute intestinal anthroponotic infection caused by bacteria of the species Vibrio cholerae. Methods of diagnosis and clinical features of disease. Traditional methods of treatment and prevention of disease.

    презентация [1,0 M], добавлен 22.09.2014

  • Features of the structure and anatomy of the heart, it's main functions and tasks in the body. Changes taking place in the human heart in the course of his life from birth to aging. Age-related disorders in the blood supply system and the heart.

    презентация [725,8 K], добавлен 16.10.2016

  • Body Water Compartments. The main general physico-chemical laws. Disorders of water and electrolyte balance. Methods bodies of water in the body, and clinical manifestations. Planning and implementation of treatment fluid and electrolyte disorders.

    презентация [1,1 M], добавлен 11.09.2014

  • Improvement of antibiotic production. Use of antibiotics in human, veterinary and plant medicine. Genetic manipulation of antibiotic producers. Influence of low molecular compounds. Conservation of microorganisms. Protection of workers and life safety.

    дипломная работа [1,2 M], добавлен 12.04.2015

  • The development of modern medicine. The creation of internal organs, implants. The use of modern orthopaedics mechanical devices. The replacement of lost parts of the human body by means of surgical operations. Bridge denture. The use of prostheses.

    презентация [5,0 M], добавлен 31.05.2016

  • The concept and the internal structure of the lungs, the main components and their interaction. Functional features of the lungs in the human body, their relationship with other anatomical systems. Existing pathology of respiratory organ and control.

    презентация [2,5 M], добавлен 12.02.2015

  • The brain as one of the largest and most complex organ in the human body. The physiological function of the brain, its divisions and share. The cerebral cortex of man. The principles of domination of the right and left hemispheres of different people.

    презентация [1,1 M], добавлен 20.11.2014

  • The characteristic features of the two forms of eating disorders: anorexia nervosa and bulimia. Description body dysmorphic disorder syndrome as a teenager painful experiences of his "physical disability." Methods of treatment and prevention of disease.

    курсовая работа [17,9 K], добавлен 31.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.