Катаболизм белка
Характеристика аминокислот, входящих в состав белка, по биологическим функциям. Изоэлектрическая точка белка. Определение его концентрации. Специфичность ферментов желудочно-кишечного тракта. Образование биогенных аминов. Реакции обезвреживания аммиака.
Рубрика | Медицина |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 05.10.2020 |
Размер файла | 912,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Карбоксипептидазы А и В - цинксодержащие ферменты, отщепляют С-концевые остатки аминокислот. Причём карбоксипептидаза А отщепляет преимущественно аминокислоты, содержащие ароматические или гидрофобные радикалы, а карбоксипептидаза В - остатки аргинина и лизина.
Последний этап переваривания - гидролиз небольших пептидов, происходит под действием ферментов аминопептидаз и дипептидаз, которые синтезируются клетками тонкого кишечника в активной форме.
· Аминопептидазы последовательно отщепляют N-концевые аминокислоты пептидной цепи. Наиболее известна лейцинаминопептидаза - Zn2+- или Мn2+-содержащий фермент, несмотря на название, обладающий широкой специфичностью по отношению к N-концевым аминокислотам.
· Дипептидазы расщепляют дипептиды на аминокислоты, но не действуют на трипептиды.
В результате последовательного действия всех пищеварительных протеаз большинство пищевых белков расщепляется до свободных аминокислот.
Конечные продукты гидролиза белков: 2 аминокислоты. Т.к. при гидролизе разрывается пептидная связь и остаются 2-аминокислоты.
Пример: Возмем произвольный фрагмент белка:
где R1 и R2 - заместители для определенных аминокислот.
5. Опишите механизм всасывания и пути метаболизма аминокислот, полученных при гидролизе белка
Продукты гидролиза белков всасываются в пищеварительном тракте в основном в виде свободных аминокислот. Кинетика всасывания аминокислот в опытах in vivo и in vitro свидетельствует, что аминокислоты, подобно глюкозе, всасываются свободно с ионами Na+. Для лизина, цистеина и цистина, глицина и пролина, очевидно, существует более одной системы транспорта через стенку кишечника. Некоторые аминокислотыобладают способностью конкурентно тормозить всасывание других аминокислот, что свидетельствует о вероятном существовании общей переносящей системы или одного общего механизма. Так, в присутствии лизина тормозится всасывание аргинина, но не изменяется всасывание аланина, лейцина и глутамата.
Современные представления о проблеме транспорта веществ через мембраны (включая мембраныэпителиальных клеток кишечника) не позволяют точно охарактеризовать молекулярный механизм транспорта аминокислот. Существует два представления, по-видимому, дополняющих друг друга о том, что требуемая для активного транспорта энергия образуется за счет биохимических реакций (это так называемый направляемый метаболизмом транспорт) или за счет энергии переноса другого транспортируемого вещества, в частности энергии движения ионов Na+(или других ионов) в клетку.
Данные о специфичности транспорта аминокислот через биомембраны клеток были получены при анализе наследственных дефектов всасывания аминокислот в кишечнике и почках. Классическим примером является цистинурия, при которой резко повышено содержание в моче цистина, аргинина, орнитина и лизина. Это повышение обусловлено наследственным нарушением механизма почечной реабсорбции. Цистин относительно нерастворим в воде, поэтому он легко выпадает в осадок в мочеточнике или мочевом пузыре, в результате чего образуются цистиновые камни и нежелательные последствия (закупорка мочевыводящего тракта, развитие инфекции и др.). Аналогичное нарушение всасывания аминокислот, в частности триптофана, наблюдается при болезни Хартнупа.
Доказано всасывание небольших пептидов. Так, в опытах in vitro и in vivo свободный глицин всасывался значительно медленнее, чем дипептид глицилглицин или даже трипептид, образованный из трех остатков глицина. Тем не менее во всех этих случаях после введения олигопептидов с пищей в портальной крови обнаруживали свободные аминокислоты; это свидетельствует о том, что олигопептиды подвергаются гидролизу после всасывания. В отдельных случаях отмечают всасывание больших пептидов. Например, некоторые растительные токсины, в частности абрин и рицин, а также токсиныботулизма, холеры и дифтерии всасываются непосредственно в кровь. Дифтерийный токсин (мол. масса 63000), наиболее изученный из токсинов, состоит из двух функциональных полипептидов: связывающегося со специфическим рецептором на поверхности чувствительной клетки и другого - проникающего внутрь клетки и оказывающего эффект, который чаще всего сводится к торможению внутриклеточного синтеза белка.
Транспорт этих двух полипептидов или целого токсина через двойной липидный слой биомембран до настоящего времени считается уникальным и загадочным процессом.
Ряд вопросов, однако, до сих пор остается нерешенным. Это, в частности, вопросы о количестве всасывающихся небольших пептидов и месте их гидролиза (на клеточной поверхности или внутриклеточно), а также основная проблема: выяснение молекулярных механизмов работы транспортных систем.
6. Перечислите пути использования этих аминокислот в организме
Цистеин является чрезвычайно важной аминокислотой в связи с тем, что это единственный источник органической серы для клеток организма.
В результате реакций метаболизма эта сера переходит в состав других серусодержащих веществ - фосфоаденозинфосфосерная кислота (ФАФС), коэнзим А, глутатион, сульфированные производные углеводов (хондроитинсульфат, кератансульфат, дерматансульфат) или выводится почками в виде сульфатов.
Рис. 2 Пути использования цистеина
Одним из производных цистеина является таурин, обладающий следующими функциями:
· является обязательным компонентом желчных кислот
· играет роль внутриклеточного антиоксиданта,
· есть данные о функции таурина как тормозного нейромедиатора.
Реакции синтеза таурина
Триптофан относится к группе гидрофобных ароматических аминокислот и для человека является незаменимой аминокислотой.
Поступающий в составе белков пищи триптофан в основном используется для биосинтеза белков, биогенного амина серотонина и гормона мелатонина, ниацина (витамин PP).
Метаболизм аминокислоты осуществляется в трех направлениях, которые сложны и на некоторых участках перекрещиваются друг с другом.
Принципиально можно выделить следующие пути:
1. Кинурениновый (основной) - окисление и разрушение индольного кольца с образованием производных кинуреновой и антраниловой кислот. Большая часть триптофана распадается до ацетил-S-КоА, но в одном из ответвлений этого пути одна из 60 молекул триптофана превращается в никотиновую кислоту (витамин B3, ниацин).
2. Серотониновый путь - окисление до 5-окситриптофана и далее превращение в серотонин и мелатонин.
3. Индольный путь - образование индольных производных, которые затем конъюгируются и выводятся с мочой.Реакции метаболизма триптофана
7. Напишите реакцию дезаминирования одной из аминокислот, входящих в состав белка. Какие требуются ферменты и витамины для этих процессов?
Реакция включает анаэробную фазу дегидрирования глутаминовой кислоты с образованием промежуточного продукта - иминоглутаровой кислоты и спонтанный гидролиз последней на аммиак и б-кетоглутаровую кислоту в соответствии со следующей схемой:
Первая стадия окисления глутаминовой кислоты аналогична реакции окислительного дезаминирования; восстановленный НАД (НАДН2) далее окисляется при участии флавиновых ферментов и цнтохромной системы (см. Тканевое дыхание) с образованием конечного продукта - воды. Образовавшийся аммиак благодаря обратимости ферментативной реакции в присутствии НАДН2 (более активным донором водорода в синтетической реакции оказался НАДФН2) может участвовать в восстановительном аминировании б-кетоглутаровой кислоты с образованием глутаминовой кислоты. В последней реакции глутаматдегидрогеназа работает как бы в режиме синтеза и при физиологических значениях pH реакция больше сдвинута в сторону синтеза глутаминовой кислоты. Глутаматдегидрогеназа является также одним из наиболее изученных ферментов азотистого обмена.
Это олигомерный фермент (молекулярная масса 312 000), состоящий из 6 субъединиц (каждая из которых имеет молекулярную массу около 52 000), проявляющий свою основную активность только в мультимерной форме. При диссоциации этой молекулы на субъединицы, наступающей легко в присутствии НАДН2, ГТФ и некоторых стероидных гормонов, фермент теряет свою главную глутаматдегидрогеназную функцию, но приобретает способность дезаминировать ряд других аминокислот, в частности аланин. Эти данные по изменению активности и специфичности действия свидетельствуют об аллостерической природе глутаматдегидрогеназы, действующей как регуляторный фермент в аминокислотном обмене.
Помимо перечисленных выше четырех типов дезаминирования аминокислот и ферментов, катализирующих эти превращения, в животных тканях и в печени человека открыты также три специфических фермента, катализирующих неокислительное дезаминирование серина, треонина и цистеина:
8. Напишите реакцию декарбоксилирования одной из аминокислот, входящих в состав белка, в результате которых образуются биогенные амины. Какие требуются ферменты и витамины для этих процессов?
Первая (1), анаэробная, стадия характеризуется образованием альдегида, аммиака и восстановленного фермента. Последний в аэробной фазе окисляется молекулярным кислородом. Образовавшаяся перекись водорода далее распадается на воду и кислород. Моноаминоксидаза (МАО), ФАД-содержащий фермент, преимущественно локализуется в митохондриях, играет исключительно важную роль в организме, регулируя скорость биосинтеза и распада биогенных аминов. Некоторые ингибиторы моно-аминоксидазы (ипраниазид, гармин, паргилин) используются при лечении гипертонической болезни, депрессивных состояний, шизофрении и др.
Процесс отщепления карбоксильной группы аминокислот в виде СО2 получил название декарбоксилирования. Несмотря на ограниченный круг аминокислот и их производных, подвергающихся декарбоксилиро-ванию в животных тканях, образующиеся продукты реакции - биогенные амины - оказывают сильное фармакологическое действие на множество физиологических функций человека и животных. В животных тканях установлено декарбоксилирование следующих аминокислот и их производных: тирозина, триптофана, 5-окситриптофана, валина, серина, гистидина, глу-таминовой и г-оксиглутаминовой кислот, 3,4-диоксифенилаланина, цис-теина, аргинина, орнитина, S-аденозилметионина и б-аминомалоновой кислоты. Помимо этого, у микроорганизмов и растений открыто де-карбоксилирование ряда других аминокислот.
В живых организмах открыты 4 типа декарбоксилирования аминокислот:
1. б-Декарбоксилирование, характерное для тканей животных, при котором от аминокислот отщепляется карбоксильная группа, стоящая по соседству с б-углеродным атомом. Продуктами реакции являются СО2 и биогенные амины:
2. щ-Декарбоксилирование, свойственное микроорганизмам. Например, из аспарагиновой кислоты этим путем образуется б-аланин:
3. Декарбоксилирование, связанное с реакцией трансаминирования:
В этой реакции образуются альдегид и новая аминокислота, соответствующая исходной кетокислоте.
4. Декарбоксилирование, связанное с реакцией конденсации двух молекул:
Эта реакция в тканях животных осуществляется при синтезе д-амино-левулиновой кислоты из глицина и сукцинил-КоА (см. главу 13) и при синтезе сфинголипидов, а также у растений при синтезе биотина.
Реакции декарбоксилирования в отличие от других процессов промежуточного обмена аминокислот являются необратимыми. Они катализируются специфическими ферментами - декарбоксилазами аминокислот, отличающимися от декарбоксилаз б-кетокислот (см. главу 10) как белковым компонентом, так и природойкофермента. Декарбоксилазы аминокислот состоят из белковой части, обеспечивающей специфичностьдействия, и простетической группы, представленной пиридоксальфосфатом (ПФ), как и у трансаминаз.
Таким образом, в двух совершенно различных процессах обмена аминокислот участвует один и тот же кофермент. Исключение составляют две декарбоксилазы: гистидиндекарбоксилаза Micrococcus и Lactobacilus и аденозилметионин-декарбоксилаза Е. coli, содержащие вместо ПФ остаток пировиноградной кислоты.
В животных тканях с высокой скоростью протекает декарбоксилирование гистидина под действием специфической декарбоксилазы.
Гистамин оказывает широкий спектр биологического действия. По механизму действия на кровеносные сосуды он резко отличается от других биогенных аминов, так как обладает сосудорасширяющим свойством. Большое количество гистамина образуется в области воспаления, что имеет определенный биологический смысл. Вызывая расширение сосудов в очаге воспаления, гистамин тем самым ускоряет приток лейкоцитов, способствуя активации защитных сил организма. Кроме того, гистамин участвует в секреции соляной кислотыв желудке, что широко используется в клинике при изучении секреторной деятельности желудка (гистаминовая проба). Он имеет прямое отношение к явлениям сенсибилизации и десенсибилизации. При повышенной чувствительности к гистамину в клинике используют антигистаминные препараты (санорин, димедрол и др.), оказывающие влияние на рецепторы сосудов. Гистамину приписывают также роль медиатора боли. Болевой синдром - сложный процесс, детали которого пока не выяснены, но участие в нем гистамина не подлежит сомнению.
В клинической практике широко используется, кроме того, продукт б-декарбоксилирования глутаминовой кислоты - г-аминомасляная кислота (ГАМК). Фермент, катализирующий эту реакцию(глутаматдекарбоксилаза), является высокоспецифичным.
Интерес к ГАМК объясняется ее тормозящим действием на деятельность ЦНС. Больше всего ГАМК и глутаматдекарбоксилазы обнаружено в сером веществе коры большого мозга, в то время как белое веществомозга и периферическая нервная система их почти не содержат. Введение ГАМК в организм вызывает разлитой тормозной процесс в коре (центральное торможение) и у животных приводит к утрате условных рефлексов. ГАМК используется в клинике как лекарственное средство при некоторых заболеваниях ЦНС, связанных с резким возбуждением коры большого мозга. Так, при эпилепсии хороший эффект (резкое сокращение частоты эпилептических припадков) дает введение глутаминовой кислоты. Как оказалось, лечебный эффект обусловлен не самой глутаминовой кислотой, а продуктом ее декарбоксилирования - ГАМК.
Ферменты, катализирующие эти реакции, получили название моноамин-и диаминоксидаз. Более подробно изучен механизм окислительного дез-аминирования моноаминов. Этот ферментативный процесс является необратимым и протекает в две стадии:
R-CH2-NH2+ Е-ФАД + H20-> R-CHO + NH3+ Е-ФАДН2
Е-ФАДН2 +02-> Е-ФАД + Н202 .
9. Какие токсические продукты могут образовываться при избытке данного белка?
Ещё в начале ХХ века великий физиолог И. Мечников утверждал, что процессы гниения белковой пищи в кишечнике и вызываемая ими аутоинтоксикация - главное препятствие в достижении долголетия. В своих экспериментах он вводил подопытным животным гнилостные продукты из кишечника человека и получал у них различные патологические состояния организма. Многочисленные гнилостные микроорганизмы кишечника для своего роста и размножения могут использовать целый ряд аминокислот: цистин, цистеин, метионин, орнитин, лизин, фенилаланин, тирозин и триптофан. Эти аминокислоты присутствуют в любых белках и поэтому процесс гниения в равной степени присущ как животной, так и растительной пище. Причём независимо от того, прошла она термообработку или нет.
Патогенная микрофлора кишечника располагает набором ферментных систем, отличных от соответствующих ферментов человека и катализирующих самые разнообразные превращения аминокислот и белков пищи. Поэтому на высокобелковом рационе в кишечнике человека создаются оптимальные условия для образования ядовитых продуктов распада аминокислот: фенола, индола, крезола, скатола, сероводорода, метилмеркаптана, кадаверина, путресцина и т.д. Суммарное токсическое действие этих веществ оказывает отрицательный эффект на весь организм человека. Даже в малых концентрациях продукты гниения белка могут вызывать головную боль, тошноту и общее ухудшение самочувствия. Ну а в высоких концентрациях многие из этих соединений обладают нейротоксичным действием, поражают центральную нервную систему, вызывают психические и неврологические расстройства, а также могут провоцировать депрессию.
Многочисленные превращения аминокислот, вызванные деятельностью микроорганизмов кишечника, получили общее название «гниение белков в кишечнике». Так, в процессе распадасеросодержащих аминокислот (цистин, цистеин, метионин) в кишечнике образуются сероводород H2S и метил-меркаптан CH3SH. Диаминокислоты - орнитин и лизин - подвергаются процессу декарбоксилирования с образованием токсичных аминов - путресцина и кадаверина.
Из ароматических аминокислот: фенилаланин, тирозин и триптофан - при аналогичномбактериальном декарбоксилировании образуются соответствующие амины:фенилэтиламин, параоксифенилэтиламин и индолилэтиламин (триптамин). Кроме того, микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частности тирозина и триптофана, с образованием ядовитых продуктов обмена-соответственно крезола и фенола, скатола и индола.
После всасывания эти продукты через воротную вену попадают в печень, где подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой с образованием нетоксичных, так называемых парных, кислот (например, фенолсерная кислота или скатоксилсерная кислота). Последние выделяются с мочой.
белок аминокислота фермент аммиак
Механизм обезвреживания этих продуктов изучен детально. В печени содержатсяспецифические ферменты - арилсульфотрансфераза и УДФ-глюкоронилтран-сфераза, катализирующие соответственно перенос остатка серной кислоты из ее связанной формы - 3'-фосфоаденозин-5'-фосфосульфата (ФАФС) и остатка глюкуроновой кислоты также из ее связанной формы - уридил-дифосфоглюкуроновой кислоты (УДФГК) на любой из указанных продуктов.
Гипераммониемия (повышение уровня аммиака в организме). В результате гниения белков в кишечнике человека образуется и всасывается в кровь аммиак. Аммиак - токсичное соединение. Даже небольшое повышение его концентрации оказывает неблагоприятное действие на организм, и прежде всего на ЦНС. Этот ядовитый газ легко проникает через мембраны в клетки и изменяет течение некоторых биохимических реакций в митохондриях. Результатом воздействия аммиака на метаболизм тканей мозга является кислородное и энергетическое голодание нейронов, изменение нормального обмена аминокислот, а также подавление синтеза некоторых нейромедиаторов.(i) Поэтому активное гниение белковой пищи в кишечнике может приводить к различным неврологическим и психическим нарушениям.
10. Напишите две реакции обезвреживания аммиака
Обезвреживание аммиака в организме.
В организме человека подвергается распаду около 70 г аминокислот в сутки, при этом в результате реакцийдезаминирования и окисления биогенных аминов освобождается большое количество аммиака, являющегося высокотоксичным соединением. Поэтому концентрация аммиака в организме должна сохраняться на низком уровне. Действительно, уровень аммиака в крови в норме не превышает 60 мкмоль/л (это почти в 100 раз меньше концентрации глюкозы в крови). В опытах на кроликах показано, что концентрация аммиака 3 ммоль/л является летальной. Таким образом, аммиак должен подвергаться связыванию в тканях с образованием нетоксичных соединений, легко выделяющихся с мочой.
Один из путей связывания и обезвреживания аммиака в организме, в частности в мозге, сетчатке, почках, печени и мышцах,- это биосинтез глутамина (и, возможно, аспарагина). Глутамин и аспарагин выделяются с мочой в небольшом количестве. Было высказано предположение, что они выполняют скорее транспортную функцию переноса аммиака в нетоксичной форме. Ниже приводится химическая реакция синтеза глутамина, катализируемого глутаминсинтетазой.
Механизм этой синтетазной реакции, подробно изученный А. Майстером, включает ряд стадий. Синтез глутамина в присутствии глутамин-синтетазы может быть представлен в следующем виде:
Биосинтез аспарагина протекает несколько отлично и зависит от природы ферментов и донора аммиака. Так, у микроорганизмов и в животных тканях открыта специфическая аммиакзависимая аспарагинсинтетаза, которая катализирует синтез аспарагина в две стадии:
В животных тканях содержится, кроме того, глутаминзависимая аспа-рагинсинтетаза, которая для синтеза во второй стадии использует амидную группу глутамина:
б) Е-аспартил~АМФ + Глн -> Асн + Е + АМФ + Глу.
Суммарная ферментативная реакция синтеза аспарагина может быть представлена в следующем виде:
Асп + АТФ + NН3 (или Глн) -> Асн + АМФ + РРi + (Глу).
Видно, что энергетически синтез аспарагина обходится организму дороже, поскольку образовавшийся РРiдалее распадается на ортофосфат.
Часть аммиака легко связывается с б-кетоглутаровой кислотой благодаря обратимости глутаматдегидрогеназной реакции. Если учесть связывание одной молекулы аммиака при синтезе глутамина, то нетрудно видеть, что в организме имеется хорошо функционирующая система, связывающая две молекулыаммиака:
Глутамин, кроме того, используется почками в качестве резервного источника аммиака (образуется из глутамина под действием глутаминазы), необходимого для нейтрализации кислых продуктов обмена при ацидозе и защищающего тем самым организм от потери с мочой используемых для этих целей ионов Na+.
Размещено на Allbest.ru
Подобные документы
Эндоскопия желудочно-кишечного тракта, его сущность и особенности. Эзофагогастродуоденоскопия и гастроскопия, их роль и значение для обследования пищевода и желудка. Подготовка больных к эндоскопическим исследованиям органов желудочно-кишечного тракта.
курсовая работа [29,9 K], добавлен 31.05.2014Взаимосвязь болезней полости рта с нарушениями различных отделов желудочно-кишечного тракта. Нарушение жевательного аппарата. Роль стоматолога в комплексном лечении детей с патологией желудочно-кишечного тракта на этапах медицинской реабилитации.
реферат [38,3 K], добавлен 29.03.2009Уход за больным ребенком - важный элемент в комплексе терапевтических мероприятий при заболеваниях. Распространенные заболевания желудочно-кишечного тракта у детей, их основные симптомы. Уход за больными детьми с заболеваниями желудочно-кишечного тракта.
реферат [27,9 K], добавлен 26.12.2016Белковая дистрофия (диспротеинозы) — заболевания, связанные с нарушением обмена белка. Относится к одной из трех видов дистрофий (к паренхиматозной дистрофии). Основные проявления дефицита белка. Интегральный показатель общего уровня белкового обмена.
презентация [322,3 K], добавлен 17.06.2015Понятие и концепция гормонов желудочно-кишечного тракта, источники и факторы их формирования, характеристика и свойства. Семейство секретинов и гастрин-холецистокинин. Общая классификация исследуемых гормонов, их разновидности и значение в организме.
презентация [71,9 K], добавлен 07.06.2015Белки как главная составная часть органов и тканей организма. Роль белка в организме. Продукты с высоким содержанием белка. Проблема белкового дефицита в современном мире. Синдром квашиоркора - вид тяжелой дистрофии на фоне недостатка белков в рационе.
презентация [410,6 K], добавлен 30.03.2016Скрининг пациентов с заболеваниями желудочно-кишечного тракта. причина болей в животе. Шкала оценки важности симптомов. Функциональные нарушения деятельности желудочно-кишечного тракта. Критерии для хронической и длительной функциональной брюшной боли.
статья [21,6 K], добавлен 14.11.2008Характеристика основных принципов и правил фитотерапии заболеваний желудочно-кишечного тракта: гастрита, язвенной болезни желудка и двенадцатиперстной кишки. Используемые лекарственные растения: подорожник большой, солодка гладкая, липа сердцевидная.
курсовая работа [70,7 K], добавлен 29.10.2013Процесс обмена белков, аминокислот и отдельных аминокислот. Биогенные амины, их роль и значение. Окисление биогенных аминов (моноаминоксидазы). Роль гистамина в развитии воспаления и аллергических реакций. Антигистаминные препараты, их задачи и функции.
презентация [1,4 M], добавлен 13.04.2015Опасность перерождения полипов желудочно-кишечного тракта (ЖКТ) в раковую опухоль - аденокарциному. Особенности диагностики полипов ЖКТ. Предраковые заболевания толстой кишки. Полипоз желудка как наследственное заболевание. Виды полипов и их лечение.
презентация [230,9 K], добавлен 27.02.2014