Исследование температурозависимых молекулярных механизмов развития инфекций — ключ к созданию современных профилактических средств (обзор)

Определение ключевой роли Toll-подобных рецепторов (TLRs) в инициации иммунитета, патогенезе воспалительных и аутоиммунных реакций. Изучение значения инфекций, ассоциированных с грамотрицательной флорой, и своеобразия структуры их клеточной мембраны.

Рубрика Медицина
Вид статья
Язык русский
Дата добавления 10.04.2018
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

66. Park B.S., Song D.H., Kim H.M., Choi B.S., Lee H., Lee J.O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009; 458(7242): 1191-1195, http://dx.doi.org/10.1038/nature07830.

67. Takeuchi O., Hoshino K., Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 2000; 165(10): 5392-5396, http://dx.doi.org/10.4049/jimmunol.165.10.5392.

68. Maeshima N., Fernandez R.C. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol 2013; 3: 3, http://dx.doi.org/10.3389/fcimb.2013.00003.

69. Tsuda K., Katagiri F. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 2010; 13(4): 459-465,http://dx.doi.org/10.1016/j.pbi.2010.04.006.

70. Liu W., Liu J., Ning Y., Ding B., Wang X., Wang Z., Wang G.L. Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol Plant 2013; 6(3): 605-620, http://dx.doi.org/10.1093/mp/sst015.

71. Gouhier-Darimont C., Schmiesing A., Bonnet C., Lassueur S., Reymond P. Signaling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity. J Exp Bot 2013; 64(2): 665-674, http://dx.doi.org/10.1093/jxb/ers362.

72. Ishikawa K., Yamaguchi K., Sakamoto K., Yoshimura S., Inoue K., Tsuge S., Kojima C., Kawasaki T. Bacterial effectors modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nat Commun 2014; 5: 5430-5434,http://dx.doi.org/10.1038/ncomms6430.

73. Lozano-Durбn R., Bourdais G., He S.Y., Robatzek S. The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. New Phytol 2014; 202(1): 259-269, http://dx.doi.org/10.1111/nph.12651.

74. Krцner A., Hamelin G., Andrivon D., Val F. Quantitative resistance of potato to Pectobacterium atrosepticum and Phytophthora infestans: integrating PAMP-triggered response and pathogen growth. PLoS One 2011; 6(8): e23331,http://dx.doi.org/10.1371/journal.pone.0023331.

75. Laporte J., Savin C., Lamourette P., Devilliers K., Volland H., Carniel E., Crйminon C., Simon S. Fast and sensitive detection of enteropathogenic Yersinia by immunoassays. J Clin Microbiol 2015; 53(1): 146-159, http://dx.doi.org/10.1128/JCM.02137-14.

76. Philip N.H., Brodsky I.E. Cell death programs in Yersinia immunity and pathogenesis. Front Cell Infect Microbiol 2012; 2: 149, http://dx.doi.org/10.3389/fcimb.2012.00149.

77. Galindo C.L., Rosenzweig J.A., Kirtley M.L., Chopra A.K. Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in human yersiniosis. J Pathog 2011; 2011: e182051,http://dx.doi.org/10.4061/2011/182051.

78. Auerbuch V., Golenbock D.T., Isberg R.R. Innate immune recognition of Yersinia pseudotuberculosis type III secretion. PLoS Pathog 2009; 5(12): e1000686, http://dx.doi.org/10.1371/journal.ppat.1000686.

79. Bergsbaken T., Cookson B.T. Macrophage activation redirects Yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 2007; 3(11): e161,http://dx.doi.org/10.1371/journal.ppat.0030161.

80. Brodsky I.E., Palm N.W., Sadanand S., Ryndak M.B., Sutterwala F.S., Flavell R.A., Bliska J.B., Medzhitov R. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 2010; 7(5): 376-387, http://dx.doi.org/10.1016/j.chom.2010.04.009.

81. Cornelis G.R. The Yersinia Ysc-Yop `type III' weaponry. Nat Rev Mol Cell Biol 2002; 3(10): 742-752, http://dx.doi.org/10.1038/nrm932.

82. Kawahara K., Tsukano H., Watanabe H., Lindner B., Matsuura M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun 2002; 70(8): 4092-4098, http://dx.doi.org/10.1128/IAI.70.8.4092-4098.2002.

83. Brodsky I.E., Monack D. NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol 2009; 21(4): 199-207,http://dx.doi.org/10.1016/j.smim.2009.05.007.

84. Du Y., Rosqvist R., Forsberg A. Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun 2002; 70(3): 1453-1460, http://dx.doi.org/10.1128/IAI.70.3.1453-1460.2002.

85. Edelmann K.H., Richardson-Burns S., Alexopoulou L., Tyler K.L., Flavell R.A., Oldstone M.B. Does Toll-like receptor 3 play a biological role in virus infections? Virology 2004; 322(2): 231-238, http://dx.doi.org/10.1016/j.virol.2004.01.033.

86. Sing A., Reithmeier-Rost D., Granfors K., Hill J., Roggenkamp A., Heesemann J. A hypervariable N-terminal region of Yersinia LcrV determines Toll-like receptor 2-mediated IL-10 induction and mouse virulence. Proc Natl Acad Sci USA 2005; 102(44): 16049-16054,http://dx.doi.org/10.1073/pnas.0504728102.

87. Du Y., Koh H., Park C.G., Dudziak D., Seo P., Mehandru S., Choi J.H., Cheong C., Park S., Perlin D.S., Powell B.S., Steinman R.M. Targeting of LcrV virulence protein from Yersinia pestis to dendritic cells protects mice against pneumonic plague. Eur J Immunol 2010; 40(10): 2791-2796, http://dx.doi.org/10.1002/eji.201040511.

88. Saitoh S., Akashi S., Yamada T., Tanimura N., Kobayashi M., Konno K., Matsumoto F., Fukase K., Kusumoto S., Nagai Y., Kusumoto Y., Kosugi A., Miyake K. Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int Immunol 2004; 16(7): 961-969,http://dx.doi.org/10.1093/intimm/dxh097.

89. Jin M.S., Lee J.O. Structures of the Toll-like receptor family and its ligand complexes. Immunity 2008; 29(2): 182-191, http://dx.doi.org/10.1016/j.immuni.2008.07.007.

90. Hawn T.R., Verbon A., Lettinga K.D., Zhao L.P., Li S.S., Laws R.J., Skerrett S.J., Beutler B., Schroeder L., Nachman A., Ozinsky A., Smith K.D., Aderem A. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires' disease. J Exp Med 2003; 198(10): 1563-1572,http://dx.doi.org/10.1084/jem.20031220.

91. Nagai Y., Akashi S., Nagafuku M., Ogata M., Iwakura Y., Akira S. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 2002; 3(7): 667-672,http://dx.doi.org/10.1038/ni809.

92. Hayashi F., Smith K.D., Ozinsky A., Hawn T.R., Yi E.C., Goodlett D.R., Eng J.K., Akira S., Underhill D.M., Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410(6832): 1099-1103, http://dx.doi.org/10.1038/35074106.

93. Hoshino K., Takeuchi O., Kawai T., Sanjo H., Ogawa T., Takeda Y., Takeda K., Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162(7): 3749-3752.

94. Wright S.D., Ramos R.A., Tobias P.S., Ulevitch R.J., Mathison J.C. CD14, a receptor for complexes of lipopolysaccharide and LPS binding protein. Science 1990; 249(4975): 1431-1433, http://dx.doi.org/10.1126/science.1698311.

95. Sing A., Roggenkamp A., Geiger A.M., Heesemann J. Yersinia enterocolitica evasion of the host innate immune response by V antigen-induced IL-10 production of macrophages is abrogated in IL-10-deficient mice. J Immunol 2002; 168(3): 1315-1321,http://dx.doi.org/10.4049/jimmunol.168.3.1315.

96. Kusumoto S., Fukase K., Fukase Y., Kataoka M., Yoshizaki H., Sato K., Oikawa M., Suda Y. Structural basis for endotoxic and antagonistic activities: investigation with novel synthetic lipid A analogs. J Endotoxin Res 2003; 9(6): 361-366,http://dx.doi.org/10.1177/09680519030090060901.

97. Lembo A., Pelletier M., Iyer R., Timko M., Dudda J.C., West T.E., Wilson C.B., Hajjar A.M., Skerrett S.J. Administration of a synthetic TLR4 agonist protects mice from pneumonic tularemia. J Immunol 2008; 180(11): 7574-7581,http://dx.doi.org/10.4049/jimmunol.180.11.7574.

98. Dentovskaya S.V., Bakhteeva I.V., Titareva G.M., Shaikhutdinova R.Z., Anisimov A.P., Kondakova A.N., Bystrova O.V., Knirel Y.A., Lindner B. Structural diversity and endotoxic activity of the lipopolysaccharide of Yersinia pestis. Biochemistry (Moscow) 2008; 73(2): 192-199, http://dx.doi.org/10.1134/s0006297908020119.

99. Schromm A.B., Brandenburg K., Loppnow H., Moran A.P., Koch M.H., Rietschel E.T., Seydel U. Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur J Biochem 2000; 267(7): 2008-2013, http://dx.doi.org/10.1046/j.1432-1327.2000.01204.x.

100. Schromm A.B., Lien E., Henneke P., Chow J.C., Yoshimura A., Heine H., Latz E., Monks B.G., Schwartz D.A., Miyake K., Golenbock D.T. Molecular genetic analysis of an endotoxin nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J Exp Med 2001; 194(1): 79-88, http://dx.doi.org/10.1084/jem.194.1.79.

101. Bergsbaken T., Cookson B.T. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation. J Leukoc Biol 2009; 86(5): 1153-1158, http://dx.doi.org/10.1189/jlb.0309146.

102. Rebeil R., Ernst R.K., Gowen B.B., Miller S.I., Hinnebusch B.J. Variation in lipid A structure in the pathogenic Yersiniae. Mol Microbiol 2004; 52(5): 1363-1373,http://dx.doi.org/10.1111/j.1365-2958.2004.04059.x.

103. Pйrez-Gutiйrrez C., Llobet E., Llompart C.M., Reinйs M., Bengoechea J.A. Role of lipid A acylation in Yersinia enterocolitica virulence. Infect Immun 2010; 78(6): 2768-2781,http://dx.doi.org/10.1128/IAI.01417-09.

104. Perry R.D., Fetherston J.D. Yersinia pestis -- etiologic agent of plague. Clin Microbiol Rev 1997; 10(1): 35-66.

105. Chain P.S., Carniel E., Larimer F.W., Lamerdin J., Stoutland P.O., Regala W.M., Georgescu A.M., Vergez L.M., Land M.L., Motin V.L., Brubaker R.R., Fowler J., Hinnebusch J., Marceau M., Medigue C., Simonet M., Chenal-Francisque V., Souza B., Dacheux D., Elliott J.M., Derbise A., Hauser L.J., Garcia E. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 2004; 101(38): 13826-13831, http://dx.doi.org/10.1073/pnas.0404012101.

106. Montminy S.W., Khan N., McGrath S., Walkowicz M.J., Sharp F., Conlon J.E., Fukase K., Kusumoto S., Sweet C., Miyake K., Akira S., Cotter R.J., Goguen J.D., Lien E. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 2006; 7(10): 1066-1073, http://dx.doi.org/10.1038/ni1386.

107. Kiljunen S., Datta N., Dentovskaya S.V., Anisimov A.P., Knirel Y.A., Bengoechea J.A., Holst O., Skurnik M. Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage цA1122. J Bacteriol 2011; 193(18): 4963-4972, http://dx.doi.org/10.1128/JB.00339-11.

108. Ke Y., Chen Z., Yang R. Yersinia pestis: mechanisms of entry into and resistance to the host cell. Front Cell Infect Microbiol 2013; 3: 106, http://dx.doi.org/10.3389/fcimb.2013.00106.

109. Achtman M., Zurth K., Morelli G., Torrea G., Guiyoule A., Carniel E. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 1999; 96(24): 14043-14048, http://dx.doi.org/10.1073/pnas.96.24.14043.

110. Андрюков Б.Г., Тимченко Н.Ф. Апоптоз-модулирующие стратегии детерминант патогенности иерсиний. Здоровье. Медицинская экология. Наука 2015; 1(59): 29-41.

111. Cornelis G. Yersinia type III secretion: send in the effectors. J Cell Biol 2002; 158(3): 401-408, http://dx.doi.org/10.1083/jcb.200205077.

112. Kopp E., Medzhitov R. A plague on host defense. J Exp Med 2002; 196(8): 1009-1012,http://dx.doi.org/10.1084/jem.20021311.

113. Kolodziejek A.M., Schnider D.R., Rohde H.N., Wojtowicz A.J., Bohach G.A., Minnich S.A., Hovde C.J. Outer membrane protein X (Ail) contributes to Yersinia pestis virulence in pneumonic plague and its activity is dependent on the lipopolysaccharide core length. Infect Immun 2010; 78(12): 5233-5243, http://dx.doi.org/10.1128/IAI.00783-10.

114. Sun W., Six D.A., Reynolds C.M., Chung H.S., Raetz C.R., Curtiss R. 3rd. Pathogenicity of Yersinia pestis synthesis of 1-dephosphorylated lipid A. Infect Immun 2013; 81(4): 1172-1185, http://dx.doi.org/10.1128/IAI.01403-12.

115. Knirel Y.A., Anisimov A.P. Lipopolysaccharide of Yersinia pestis, the cause of plague: structure, genetics, biological properties. Acta Naturae 2012; 4(3): 46-58.

116. Reinйs M., Llobet E., Dahlstrцm K.M., Pйrez-Gutiйrrez C., Llompart C.M., Torrecabota N., Salminen T.A., Bengoechea J.A. Deciphering the acylation pattern of Yersinia enterocolitica lipid A. PLoS Pathog 2012; 8(10): e1002978, http://dx.doi.org/10.1371/journal.ppat.1002978.

117. Ohto U., Fukase K., Miyake K., Shimizu T. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci USA 2012; 109(19): 7421-7426, http://dx.doi.org/10.1073/pnas.1201193109.

118. Kumar H., Kawai T., Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun 2009; 388(4): 621-625, http://dx.doi.org/10.1016/j.bbrc.2009.08.062.

119. Mikula K.M., Kolodziejczyk R., Goldman A. Yersinia infection tools-characterization of structure and function of adhesins. Front Cell Infect Microbiol 2012; 2: 169,http://dx.doi.org/10.3389/fcimb.2012.00169.

120. Muszyсski A., Rabsztyn K., Knapska K., Duda K.A., Duda-Grychtoі K., Kasperkiewicz K., Radziejewska-Lebrecht J., Holst O., Skurnik M. Enterobacterial common antigen and O-specific polysaccharide coexist in the lipopolysaccharide of Yersinia enterocolitica serotype O:3. Microbiology 2013; 159(Pt 8): 1782-1793, http://dx.doi.org/10.1099/mic.0.066662-0.

121. Zhang Y., Bliska J.B. Role of Toll-like receptor signaling in the apoptotic response of macrophages to Yersinia infection. Infect Immun 2003; 71(3): 1513-1519,http://dx.doi.org/10.1128/IAI.71.3.1513-1519.2003.

122. Qureshi S.T., Lariviиre L., Leveque G., Clermont S., Moore K.J., Gros P., Malo D. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 1999; 189(4): 615-625,http://dx.doi.org/10.1084/jem.189.4.615.

123. Darveau R.P. Lipid A diversity and the innate host response to bacterial infection. Curr Opin Microbiol 1998; 1(1): 36-42, http://dx.doi.org/10.1016/S1369-5274(98)80140-9.

124. Kuznetsova T.A., Somova L.M., Plekhova N.G., Drobot E.I. Pathogenetic role of Yersinia pseudotuberculosis endotoxin in hemostasis and microcirculation disturbances. Bull Exp Biol Med 2011; 150(5): 619-623, http://dx.doi.org/10.1007/s10517-011-1205-3.

125. Herbst K., Bujara M., Heroven A.K., Opitz W., Weichert M., Zimmermann A., Dersch P. Intrinsic thermal sensing controls proteolysis of Yersinia virulence regulator RovA. PLoS Pathog 2009; 5(5): e1000435, http://dx.doi.org/10.1371/journal.ppat.1000435.

126. McNally A., Thomson N.R., Reuter S., Wren B.W. `Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution. Nat Rev Microbiol 2016; 14(3): 177-190,http://dx.doi.org/10.1038/nrmicro.2015.29.

Размещено на Allbest.ru


Подобные документы

  • Причины, затрудняющие диагностику и лечение урогенитальных инфекций. Исследование частоты выявления возбудителей инфекций у женщин, передаваемых половым путем методом полимеразной цепной реакции с применением диагностических тест- систем "Ампли Сенс".

    дипломная работа [20,2 K], добавлен 20.07.2013

  • Исследование причин возникновения инфекционных заболеваний. Пути передачи инфекций. Сравнительная характеристика воздушно-капельных инфекций. Профилактика острых респираторных вирусных инфекций в детских дошкольных учреждениях. Вакцинация дошкольников.

    реферат [36,9 K], добавлен 24.02.2015

  • Кишечные инфекции: общий обзор и способы передачи. Характеристика эпидемического процесса кишечных инфекций при различных путях передачи возбудителя. Характеристика предпосылок и предвестников ухудшения эпидемиологической ситуации в отношении инфекций.

    реферат [46,0 K], добавлен 21.04.2014

  • Классификация внутрибольничных инфекций: кишечные, гнойно-септические и вирусные гепатиты В, С, Д. Причины возникновения внутрибольничных инфекций в лечебно-профилактических учреждениях. Правила безопасности сотрудников больницы на рабочем месте.

    презентация [96,3 K], добавлен 10.02.2014

  • Основные принципы профилактики внутрибольничных инфекций (ВБИ). Мероприятия, направленные на источник инфекции. Обязательные обследования при поступлении в стационар. Профилактика профессионального инфицирования. Создание специфического иммунитета.

    реферат [59,6 K], добавлен 10.04.2013

  • Главное предназначение лимфоцитов. Роль медиаторов клеточного и гуморального иммунитета в патогенезе бронхиальной астмы, обструктивной болезни легких, идеопатического фиброзирующего альвеолита. Изучение клинических данных пациентов с туберкулезом.

    статья [37,2 K], добавлен 28.01.2015

  • Общая характеристика кишечных инфекций. Фекально-оральный механизм передачи. Интенсивность и главные особенности эпидемического процесса. Лабораторная диагностика кишечных инфекций. Показания к госпитализации. Профилактика острых кишечных инфекций.

    презентация [1,2 M], добавлен 20.04.2015

  • Понятие и общая характеристика стафилококков. Основные клинические проявления стафилококковых инфекций. Описание антибактериальной терапии инфекций, вызванных резистентными стафилококками, рекомендации по диагностике и лечению инфекций данной группы.

    контрольная работа [28,6 K], добавлен 15.10.2010

  • Анализ проблемы внутрибольничных инфекций (ВБИ) как заболеваний пациентов, связанных с оказанием медицинской помощи в больницах и лечебно-профилактических учреждениях. Основные виды ВБИ. Факторы, влияющие на рост ВБИ. Механизм передачи возбудителей.

    презентация [162,7 K], добавлен 31.03.2015

  • Причины развития, возбудители внутрибольничных инфекций. Формирование госпитальных штаммов. Исследование микробной обсемененности воздушной среды. Перечень объектов, подлежащих бактериологическому контролю. Выбор питательных сред для обнаружения бактерий.

    курсовая работа [33,0 K], добавлен 01.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.