Физиология центральной нервной системы

Нейрон - основная структурно-функциональная единица центральной нервной системы. Особенности морфофункциональной организации спинного мозга. Участие зрительного бугра и гипоталамуса в формировании и реализации инстинктов, влечений и эмоций человека.

Рубрика Медицина
Вид контрольная работа
Язык русский
Дата добавления 14.09.2017
Размер файла 57,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Красные ядра, получая информацию от двигательной зоны коры большого мозга, подкорковых ядер и мозжечка о готовящемся движении и состоянии опорно-двигательного аппарата, посылают корригирующие импульсы к мотонейронам спинного мозга по рубро-спинальному тракту и тем самым регулируют тонус мускулатуры, подготавливая его уровень к намечающемуся произвольному движению.

Другое функционально важное ядро среднего мозга -- черное вещество -- располагается в ножках мозга, регулирует акты жевания, глотания (их последовательность), обеспечивает точные движения пальцев кисти руки, например при письме. Нейроны этого ядра способны синтезировать медиатор дофамин, который поставляется аксональным транспортом к базальным ганглиям головного мозга. Поражение черного вещества приводит к нарушению пластического тонуса мышц. Тонкая регуляция пластического тонуса при, письме, выполнении графических работ обеспечивается черным веществом. В то же время при длительном удержании определенной позы происходят пластические изменения в мышцах, что обеспечивает наименьшие затраты энергии. Регуляция этого процесса осуществляется клетками черного вещества.

Нейроны ядер глазодвигательного и блокового нервов регулируют движение глаза вверх, вниз, наружу, к носу и вниз к углу носа. Нейроны добавочного ядра глазодвигательного нерва (ядро Якубовича) регулируют просвет зрачка и кривизну хрусталика.

Рефлекторные функции. Важнейшими структурами среднего мозга являются бугры четверохолмия. Верхние из них являются первичными подкорковыми центрами зрительного анализатора (вместе с латеральными коленчатыми телами промежуточного мозга), нижние -- слухового (вместе с медиальными коленчатыми телами промежуточного мозга). В них происходит первичное переключение зрительной и слуховой информации. От бугров четверохолмия аксоны их нейронов идут к ретикулярной формации ствола, мотонейронам спинного мозга. Нейроны четверохолмия могут быть полимодальными и детекторными. В последнем случае они реагируют только на один признак раздражения, например смену света и темноты, направление движения светового источника и т. д. Бугры четверохолмия обеспечивают реакции настораживания и на внезапные, еще не распознанные, зрительные или звуковые сигналы. Активация среднего мозга в этих случаях через гипоталамус приводит к повышению тонуса мышц, учащению сокращений сердца; происходит подготовка к избеганию, к оборонительной реакции. Четверохолмие организует ориентировочные зрительные и слуховые рефлексы.

У человека эти рефлексы являются сторожевыми. В случаях повышенной возбудимости четверохолмий при внезапном звуковом или световом раздражении у человека возникает вздрагивание, неадекватная двигательная и голосовая реакции, быстрое удаление от раздражителя, безудержное бегство.

При нарушении функций четверохолмия человек не может быстро переключаться с одного вида движения на другое. Следовательно, четверохолмия принимают участие в организации произвольных движений.

Ретикулярная формация ствола мозга.

Ретикулярная формация (formatio reticularis; РФ) или сетчатое образование мозга представлена сетью нейронов с многочисленными диффузными связями между собой и практически со всеми структурами центральной нервной системы. РФ располагается в толще серого вещества продолговатого, среднего, промежуточного мозга и изначально связана с РФ спинного мозга. В связи с этим целесообразно ее рассмотреть как единую систему. Сетевые связи нейронов РФ между собой позволили Дейтерсу назвать ее ретикулярной формацией мозга.

РФ имеет прямые и обратные связи с корой большого мозга, базальными ганглиями, промежуточным мозгом, мозжечком, средним, продолговатым и спинным мозгом.

Основной функцией РФ является регуляция уровня активности коры большого мозга, мозжечка, спинного мозга.

С одной стороны, генерализованный характер влияния РФ на многие структуры мозга дал основание считать ее неспецифической системой. Однако исследования с раздражением РФ ствола показали, что она может избирательно оказывать активирующее или тормозящее влияние на разные формы поведения, на сенсорные, моторные, висцеральные системы мозга. Большинство нейронов РФ имеет длинные дендриты и короткий аксон. Существуют гигантские нейроны с длинным аксоном, образующие пути из РФ в другие области мозга, например в нисходящем направлении, ретикулоспинальный и руброспинальный. Аксоны нейронов РФ образуют большое число коллатералей и синапсов, которые оканчиваются на нейронах различных отделов мозга.

Активность нейронов РФ различна, но среди нейронов РФ имеются такие, которые обладают устойчивой ритмической активностью, не зависящей от приходящих сигналов, но имеются нейроны, которые в покое «молчат», т.е. не генерируют импульсы, но возбуждаются при стимуляции зрительных или слуховых рецепторов. Это так называемые специфические нейроны, обеспечивающие быструю реакцию на внезапные, неопознанные сигналы. Значительное число нейронов РФ являются полисенсорными.

В РФ продолговатого, среднего мозга и моста конвергируют сигналы различной сенсорности. На нейроны моста приходят сигналы преимущественно от соматосенсорных систем.

РФ контролирует передачу сенсорной информации, идущей через ядра таламуса, за счет того, что при интенсивном внешнем раздражении нейроны неспецифических ядер таламуса затормаживаются, тем самым снимается их тормозящее влияние с релейных ядер того же таламуса и облегчается передача сенсорной информации в кору большого мозга.

В РФ моста, продолговатого, среднего мозга имеются нейроны, которые реагируют на болевые раздражения, идущие от мышц или внутренних органов, что создает общее диффузное дискомфортное, не всегда четко локализуемое, болевое ощущение «тупой боли».

РФ ствола мозга имеет прямое отношение к регуляции мышечного тонуса, поскольку сюда поступают сигналы от зрительного и вестибулярного анализаторов и мозжечка. От РФ к мотонейронам спинного мозга и ядер черепных нервов поступают сигналы, устанавливающие положение головы, туловища и т.д.

Ретикулярные пути, облегчающие активность моторных систем спинного мозга, берут начало от всех отделов РФ. Пути, идущие от моста, тормозят активность мотонейронов спинного мозга, иннервирующих мышцы-сгибатели, и активируют мотонейроны мышц-разгибателей. Пути, идущие от РФ продолговатого мозга, вызывают противоположные эффекты. Раздражение РФ приводит к тремору, повышению тонуса мышц. После прекращения раздражения вызванный эффект сохраняется длительно, видимо, за счет циркуляции возбуждения в сети нейронов.

РФ ствола мозга участвует в передаче информации от коры большого мозга, спинного мозга к мозжечку и, наоборот, от мозжечка к этим же системам. Функция данных связей заключается в подготовке и реализации моторики, связанной с привыканием, ориентировочными реакциями, болевыми реакциями, организацией ходьбы, движениями глаз.

РФ принимает участие в регуляция функционирования дыхательного и сердечно-сосудистых центров. В регуляции вегетативных функций большое значение имеют так называемые стартовые нейроны РФ. Они дают начало циркуляции возбуждения внутри группы нейронов, обеспечивая тонус регулируемых вегетативных систем.

Влияния РФ обычно разделяют на нисходящие и восходящие. В свою очередь каждое из этих влияний имеет тормозное и возбуждающее действие.

Восходящие влияния РФ на кору большого мозга повышают ее тонус, это влияние проявляется в виде генерализованного возбуждения коры. Она имеет прямое отношение к регуляции цикла бодрствование -- сон. Стимуляция одних структур РФ приводит к развитию сна, стимуляция других вызывает пробуждение. Г.Мэгун и Д.Моруцци выдвинули концепцию, согласно которой все виды сигналов, идущих от периферических рецепторов, достигают по коллатералям РФ продолговатого мозга и моста, где переключаются на нейроны, дающие восходящие пути в таламус и затем в кору большого мозга.

Возбуждение РФ продолговатого мозга или моста вызывает синхронизацию активности коры большого мозга, появление медленных ритмов в ее электрических показателях, сонное торможение. Возбуждение РФ среднего мозга вызывает противоположный эффект пробуждения: десинхронизацию электрической активности коры, появление быстрых низкоамплитудных подобных ритмов в электроэнцефалограмме.

Г.Бремер (1935) показал, что если перерезать мозг между передними и задними буграми четверохолмия, то животное перестает реагировать на все виды сигналов; если же перерезку произвести между продолговатым и средним мозгом (при этом РФ сохраняет связь с передним мозгом), то животное реагирует на свет, звук и другие сигналы. Следовательно, поддержание активного анализирующего состояния мозга возможно при сохранении связи с передним мозгом. Реакция активации коры большого мозга наблюдается при раздражении РФ продолговатого, среднего, промежуточного мозга. В то же время раздражение некоторых ядер таламуса приводит к возникновению ограниченных локальных участков возбуждения, а не к общему ее возбуждению, как это бывает при раздражении других отделов РФ. РФ ствола мозга может оказывать не только возбуждающее, но и тормозное влияние на активность коры мозга.

Нисходящие влияния РФ ствола мозга на регуляторную деятельность спинного мозга были установлены еще И.М.Сеченовым (1862). Им было показано, что при раздражении зрительного бугра кристалликами соли у лягушки рефлексы отдергивания лапки возникают медленно, требуют более сильного раздражения или не появляются вообще, т.е. тормозятся. Г.Мэгун, нанося локальные раздражения на РФ продолговатого мозга, нашел, что при раздражении одних точек тормозятся, рефлексы сгибания передней лапы, коленный, роговичный. При раздражении РФ в других точках продолговатого мозга эти же рефлексы вызывались легче, были сильнее, т.е. их реализация облегчалась. По мнению Мэгуна, тормозные влияния на рефлексы спинного мозга может оказывать только РФ продолговатого мозга, а облегчающие влияния регулируются всей РФ ствола и спинного мозга.

6. Промежуточный мозг

Промежуточный мозг интегрирует сенсорные, двигательные и вегетативные реакции, необходимые для целостной деятельности организма. Основными образованиями промежуточного мозга являются таламус, гипоталамус.

Таламус - зрительный бугор.

Структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка.

В ядрах таламуса происходит переключение информации, поступающей от экстеро-, проприорецепторов и интероцепторов и начинаются таламокортикальные пути. Учитывая, что коленчатые тела таламуса являются подкорковыми центрами зрения и слуха, а узел уздечки и переднее зрительное ядро участвуют в анализе обонятельных сигналов, можно утверждать, что зрительный бугор в целом является подкорковой «станцией» для всех видов чувствительности. Здесь раздражения внешней и внутренней среды интегрируются, после чего поступают в кору большого мозга.

Зрительный бугор совместно с гипоталамусом принимает участие в формировании и реализации инстинктов, влечений, эмоций. В таламусе около 120 разнофункциональных ядер, которые образуют своеобразные комплексы, которые можно разделить по признаку проекции в кору на 3 группы: передняя проецирует аксоны своих нейронов в поясную извилину коры большого мозга; медиальная -- в лобную долю коры; латеральная -- в теменную, височную, затылочную доли коры. По проекциям определяется и функция ядер. Такое деление не абсолютно, так как одна часть волокон от ядер таламуса идет в строго ограниченные корковые образования, другая -- в разные области коры большого мозга.

Ядра таламуса функционально по характеру входящих и выходящих из них путей делятся на специфические, неспецифические и ассоциативные.

К специфическим ядрам относятся переднее вентральное, медиальное, вентролатеральное, постлатеральное, постмедиальное, латеральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно. Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору большого мозга от кожных, мышечных и других рецепторов. От специфических ядер импульсы поступают в строго определенные участки III-IV слоев коры большого мозга (соматотопическая локализация). Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности, так как ядра таламуса, как и кора большого мозга, имеют соматотопическую организацию. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвергируют сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса.

Латеральное коленчатое тело имеет прямые эфферентные связи с затылочной долей коры большого мозга и афферентные связи с сетчаткой глаза и с передними буграми четверохолмий. Нейроны латеральных коленчатых тел по-разному реагируют на цветовые раздражения, включение, выключение света, т.е. могут выполнять детекторную функцию.

В медиальное коленчатое тело (МТК) поступают афферентные импульсы из латеральной петли и от нижних бугров четверохолмий. Эфферетные пути от медиальных коленчатых тел идут в височную зону коры большого мозга, достигая там первичной слуховой области коры. МКТ имеет четкую тонотопичность, т.е. способность реагировать на определенную частоту звуковых колебаний. Следовательно, уже на уровне таламуса обеспечивается пространственное распределение чувствительности всех сенсорных систем организма, в том числе сенсорных посылок от интерорецепторов сосудов, органов брюшной, грудной полостей.

Ассоциативные ядра таламуса представлены передним медиодорсальным, латеральным дорсальным ядрами и подушкой. Переднее ядро связано с лимбической корой (поясной извилиной), медиодорсальное -- с лобной долей коры, латеральное дорсальное -- с теменной, подушка -- с ассоциативными зонами, теменной и височной долями коры большого мозга.

На полисенсорных нейронах таламуса происходит конвергенция возбуждений разных модальностей, формируется интегрированный сигнал, который затем передается в ассоциативную кору мозга. Нейроны подушки связаны главным образом с ассоциативными зонами теменной и височной долей коры большого мозга, нейроны латерального ядра -- с теменной, нейроны медиального ядра -- с лобной долей коры большого мозга.

Неспецифические ядра таламуса представлены: срединным центром, парацентральным ядром, центральным медиальным и латеральным, субмедиальным, вентральным передним, парафасцикулярным комплексами, ретикулярным ядром, перивентрикулярной и центральной серой массой. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в кору большого мозга и контактируют со всеми ее слоями, образуя не локальные, а диффузные связи. К неспецифическим ядрам поступают связи из РФ ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса. Возбуждение неспецифических ядер вызывает генерацию в коре специфической веретенообразной электрической активности, свидетельствующей о развитии сонного состояния. Нарушение функции неспецифических ядер затрудняет появление веретенообразной активности, т.е. развитие сонного состояния.

7. Мозжечок

Мозжечок (cerebellum) --структура головного мозга, принимающая участие в координации и регуляции произвольных, непроизвольных движений, в регуляции вегетативных и поведенческих функций. Реализация указанных функций обеспечивается следующими морфологическими особенностями мозжечка:

1) кора мозжечка построена достаточно однотипно, имеет стереотипные связи, что создает условия для быстрой обработки информации;

2) основной нейронный элемент коры -- клетка Пуркинье, имеет большое количество входов и формирует единственный аксонный выход из мозжечка, коллатерали которого заканчиваются на ядерных его структурах;

3) на клетки Пуркинье проецируются практически все виды сенсорных раздражений: проприоцептивные, кожные, зрительные, слуховые, вестибулярные и др.;

4) выходы из мозжечка обеспечивают его связи с корой большого мозга, со стволовыми образованиями и спинным мозгом.

Мозжечок анатомически и функционально делится на старую, древнюю и новую части.

Из мозжечка информация уходит через верхние и нижние ножки. Через верхние ножки сигналы идут в таламус, в мост, красное ядро, ядра ствола мозга, в ретикулярную формацию среднего мозга. Через нижние ножки мозжечка сигналы идут в продолговатый мозг к его вестибулярным ядрам, оливам, ретикулярной формации. Средние ножки мозжечка связывают новый мозжечок с лобной долей мозга.

Импульсная активность нейронов регистрируется в слое клеток Пуркинье и гранулярном слое, причем частота генерации импульсов этих клеток колеблется от 20 до 200 в секунду. Клетки ядер мозжечка генерируют импульсы значительно реже -- 1-3 импульса в секунду.

В кору мозжечка от кожных рецепторов, мышц, суставных оболочек, надкостницы сигналы поступают по так называемым спиномозжечковым трактам: по заднему (дорсальному) и переднему (вентральному). Эти пути к мозжечку проходят через нижнюю оливу продолговатого мозга. От клеток олив идут так называемые лазающие волокна, которые ветвятся на дендритах клеток Пуркинье.

Ядра моста посылают афферентные пути в мозжечок, образующие мшистые волокна, которые оканчиваются на клетках-зернах III слоя коры мозжечка. Между мозжечком и синим пятном существует афферентная связь с помощью адренергических волокон. Эти волокна способны диффузно выбрасывать норадреналин в межклеточное пространство коры мозжечка, тем самым гуморально изменяют состояние возбудимости его клеток.

Аксоны клеток III слоя коры мозжечка вызывают торможение клеток Пуркинье и клеток-зерен своего же слоя.

Клетки Пуркинье в свою очередь тормозят активность нейронов ядер мозжечка. Ядра мозжечка имеют высокую тоническую активность и регулируют тонус ряда моторных центров промежуточного, среднего, продолговатого, спинного мозга.

Подкорковая система мозжечка состоит из трех функционально разных ядерных образований: ядра шатра, пробковидного, шаровидного и зубчатого ядра.

Ядро шатра получает информацию от медиальной зоны коры мозжечка и связано с ядром Дейтерса и РФ продолговатого и среднего мозга. Отсюда сигналы идут по ретикулоспинальному пути к мотонейронам спинного мозга.

Промежуточная кора мозжечка проецируется на пробковидное и шаровидное ядра. От них связи идут в средний мозг к красному ядру, далее в спинной мозг по руброспинальному пути. Второй путь от промежуточного ядра идет к таламусу и далее в двигательную зону коры большого мозга.

Зубчатое ядро, получая информацию от латеральной зоны коры мозжечка, связано с таламусом, а через него -- с моторной зоной коры большого мозга.

Контроль двигательной активности мозжечком обеспечивается эфферентными сигналами к спинному мозгу, и регулируют силу мышечных сокращений, обеспечивают способность к длительному тоническому сокращению мышц, способность сохранять оптимальный тонус мышц в покое или при движениях, совершать адекватные произвольные движения, быстро переходить от сгибания к разгибанию и наоборот.

Мозжечок обеспечивает координированные сокращения разных мышц при сложных движениях. Например, при ходьбе, когда человек делает шаг, то одновременно центр тяжести туловища переносится вперед. В тех случаях, когда мозжечок не выполняет своей регуляторной функции, у человека наблюдаются расстройства двигательных функций, что выражается следующими симптомами.

1) астения (astenia -- слабость) -- снижение силы мышечного сокращения, быстрая утомляемость мышц;

2) астазия (astasia, от греч. а -- не, stasia -- стояние) -- утрата способности к длительному сокращению мышц, что затрудняет стояние, сидение и т.д.;

3) дистония (distonia -- нарушение тонуса) -- непроизвольное повышение или понижение тонуса мышц;

4) тремор (tremor -- дрожание) -- дрожание пальцев рук, кистей, головы в покое; этот тремор усиливается при движении;

5) дисметрия (dismetria -- нарушение меры) -- расстройство равномерности движений, выражающееся либо в излишнем, либо недостаточном движении. Больной пытается взять предмет со стола и проносит руку за предмет (гиперметрия) или не доносит ее до предмета (гипометрия);

6) атаксия (ataksia, от греч. а -- отрицание, taksia -- порядок) -- нарушение координации движений. Здесь ярче всего проявляется невозможность выполнения движений в нужном порядке, в определенной последовательности.

Проявлениями атаксии являются также, асинергия, пьяная шаткая походка. При адиадохокинезе человек не способен быстро вращать ладони вниз--вверх. При асинергии мышц он не способен сесть из положения лежа без помощи рук. Пьяная походка характеризуется тем, что человек ходит, широко расставив ноги, шатаясь из стороны в сторону от линии ходьбы. Большинство движений человек выучивает в течение жизни, и они становятся автоматическими (ходьба, письмо и т.д.).

Когда нарушается функция мозжечка, движения становятся неточными, разбросанными, часто не достигают цели. Данные о том, что повреждение мозжечка ведет к расстройствам приобретенных движений, позволяют сделать вывод, что само обучение шло с участием мозжечковых структур, а, следовательно, мозжечок принимает участие в организации процессов высшей нервной деятельность.

8. Лимбическая система

Эта система представляет собой функциональное объединение ряда структур головного мозга, принимающих участие в реализации эмоционально - мотивационных функций организма: пищевой, оборонительной, половой. Структуры мозга, относящиеся к этой системе, имеют чрезвычайно широкий спектр регуляторных влияний как на висцеральные, так и на соматические, эндокринные, обменные, поведенческие.

Основными структурными образованиями являются 3 комплекса. Первый комплекс включает в себя: древнюю кору (префериформная, периамигдалярная, диагональная кора), обонятельные луковицы, обонятельный бугорок, прозрачная перегородка. Ко второму комплексу относятся: старая кора, куда входят гиппокамп, зубчатая фасция, поясная извилина. Третий комплекс включает в себя структуры островковой коры, парагиппокамповая извилина. И, наконец, в лимбическую систему включают подкорковые структуры: миндалевидные тела, ядра прозрачной перегородки, переднее таламическое ядро, сосцевидные тела.

Особенностью лимбической системы является то, что между ее структурами имеются простые двусторонние связи и сложные пути, образующие множество замкнутых кругов. Такая организация создает условия для длительного циркулирования одного и того же возбуждения в системе и тем самым для сохранения в ней единого состояния и навязывание этого состояния другим системам мозга.

В настоящее время хорошо известны связи между структурами мозга, организующие круги, имеющие свою функциональную специфику. К ним относится круг Пейпеса (гиппокамп - сосцевидные тела - передние ядра таламуса - кора поясной извилины - парагиппокампова извилина - гиппокамп). Этот круг имеет отношение к памяти и процессам обучения.

Другой круг (миндалевидное тело - гипоталамус - мезенцефальные структуры - миндалевидное тело) регулирует агрессивно-оборонительные, пищевые и сексуальные формы поведения.

Считается, что образная (иконическая) память формируется кортико-лимбико-таламо-кортикальным кругом. Круги разного функционального назначения связывают лимбическую систему со многими структурами центральной нервной системы, что позволяет последней реализовать функции, специфика которых определяется включенной дополнительной структурой.

Большое количество связей в лимбической системе, круговое взаимодействие ее структур создают благоприятные условия для реверберации возбуждения по коротким и длинным кругам. Это, обеспечивает функциональное взаимодействие частей лимбической системы и создает условия для запоминания. Широкие связи лимбической системы с другими отделами ЦНС дает ей возможность участвовать в регуляции многих функций организма: вегетативных, соматических, эмоционально-мотивационной деятельности, регулированию уровня внимания, восприятия, воспроизведения эмоционально значимой информации, в выборе и реализации адаптивных форм поведения, поддержании гомеостаза, генеративных процессов. Наконец, она обеспечивает создание эмоционального фона, формирование и реализацию процессов высшей нервной деятельности.

Некоторые авторы называют лимбическую систему висцеральным мозгом, т.е. структурой ЦНС, участвующей в регуляции деятельности внутренних органов. Действительно лимбическая система принимает участие в регуляции вегетативных функций, но нередко изменение состояния их обусловливается тем, что эти функции являются компонентами функциональных систем, обеспечивающих приспособление организма к конкретным условиям с достижением при этом полезного конечного результата. Это может быть реализация биологических или у человека социальных мотиваций с существенным изменением при этом эмоционального статуса. Понятие « висцеральный мозг « суживает фактические функции лимбической системы, поэтому такое название не приемлемо для лимбической системы.

Наиболее многофункциональными образованиями, входящими в лимбическую систему являются гипоталамус, миндалевидное тело и гиппокамп.

9. Гиппокамп

Он расположен в глубине височных долей мозга и является основной структурой лимбической системы. Морфологически гиппокамп представлен стереотипно повторяющимися модулями, связанными между собой и с другими структурами.

Модульное строение обусловливает способность гиппокампа генерировать высокоамплитудную ритмическую активность. Связь модулей создает условие циркулирования активности в гиппокампе при обучении. При этом возрастает амплитуда синаптических потенциалов, увеличиваются нейросекреция клеток гиппокампа, число шипиков на дендритах его нейронов, что свидетельствует о переходе потенциальных синапсов в активные. Многочисленные связи гиппокампа со структурами как лимбической системы, так и других отделов мозга определяют его многофункциональность.

Выраженными и специфическими являются электрические процессы в гиппокампе. Активность здесь чаще всего характеризуется быстрыми бета-ритмами (14-30 в секунду) и медленными тета-ритмами (4-7 в секунду).

Если в новой коре ослабить десинхронизацию, т.е. возбуждение, то в гиппокампе затрудняется возникновение тета-ритма. Ретикулярная формация ствола мозга усиливает выраженность тета-ритма в гиппокампе и высокочастотных ритмов в новой коре.

Тета-ритм в гиппокампе наблюдается при высоком уровне эмоционального напряжения -- страхе, агрессии, голоде, жажде, а также при ориентировочных рефлексах, настороженности, повышенном внимании. Некоторые авторы этот ритм называют «ритмом напряжения», тета-ритм в данном случае является показателем возбужденного состояния гиппокампа.

Повреждение гиппокампа у человека нарушает память на события, близкие к моменту повреждения (ретроантероградная амнезия). Нарушаются запоминание, обработка новой информации, различие пространственных сигналов. Повреждение гиппокампа ведет к снижению эмоциональности, замедлению скорости основных нервных процессов, повышаются пороги вызова эмоциональных реакций.

10. Миндалевидное тело (corpus amygdoloideum)

Расположено оно в глубине височной доли мозга. Функции миндалины связаны с обеспечением оборонительного поведения, вегетативными, двигательными, эмоциональными реакциями, мотивацией условнорефлекторного поведения.

Миндалины реагируют многими своими нейронами на зрительные, слуховые, интероцептивные, обонятельные, кожные раздражения, причем все эти раздражения вызывают изменение активности любого из ядер миндалины, т.е. ядра миндалины полисенсорны и активируются синхронно с тета-ритмом.

Раздражение ядер миндалевидного тела вызывает выраженный симпатический или парасимпатический эффект на деятельность сердечно-сосудистой, дыхательной систем, приводит к понижению или повышению кровяного давления, нарушению проведения возбуждения по проводящей системе сердца, возникновению аритмий и экстрасистолий. При этом сосудистый тонус может не изменяться. Урежение ритма сокращений сердца при воздействии на миндалины отличается длительным скрытым периодом и имеет длительное последействие. Раздражение ядер миндалины вызывает угнетение дыхания, иногда кашлевую реакцию.

При искусственной активации миндалины появляются реакции принюхивания, облизывания, жевания, глотания, саливации, изменения перистальтики тонкой кишки, причем эффекты наступают с большим латентным периодом (до 30-45 с после раздражения).

Разнообразные эффекты раздражения миндалин обусловлены их связью с гипоталамусом, который регулирует работу внутренних органов.

Повреждение миндалины у животных вызывает дезинтеграцию в реализации поведенческих реакций, приводит к гиперсексуальности, исчезновению страха, успокоению, неспособности к ярости и агрессии. Животные становятся доверчивыми. Например, обезьяны с поврежденной миндалиной спокойно подходят к гадюке, вызывавшей ранее у них ужас, бегство. Видимо, в случае повреждения миндалины исчезают некоторые врожденные безусловные рефлексы, реализующие память об опасности.

11. Гипоталамус

Гипоталамус (hypothalamus, подбугорье) -- структура промежуточного мозга, входящая в лимбическую систему, организующая эмоциональные, поведенческие, гомеостатические реакции организма.

Гипоталамус имеет большое число нервных связей с корой большого мозга, подкорковыми узлами, зрительным бугром, средним мозгом, мостом, продолговатым и спинным мозгом.

В состав гипоталамуса входят серый бугор, воронка с нейрогипофизом и сосцевидные тела. В нейронных структурах гипоталамуса можно выделить около 50 пар ядер. Топографически эти ядра можно объединить в 5 групп:

1) преоптическая группа имеет выраженные связи с конечным мозгом и делится на медиальное и латеральное предоптические ядра;

2) передняя группа, в состав которой входят супраоптические, паравентрикулярные ядра;

3) средняя группа состоит из нижнемедиального и верхнемедиального ядер;

4) наружная группа включает в себя латеральное гипоталамическое поле и серобугорные ядра;

5) задняя группа сформирована из медиальных и латеральных ядер сосцевидных тел и заднего гипоталамического ядра.

Гипоталамус имеет богатое кровоснабжение, подтверждением чему служит тот факт, что ряд ядер гипоталамуса обладает изолированным дублирующим кровоснабжением из сосудов артериального круга большого мозга (виллизиев круг). На 1 мм2 площади гипоталамуса приходится до 2600 капилляров, в то время как на той же площади V слоя предцентральной извилины (моторной коры) их 440, в гиппокампе -- 350, в бледном шаре -- 550, в затылочной доле коры большого мозга (зрительной коре) -- 90 Капилляры гипоталамуса высокопроницаемы для крупномолекулярных белковых соединений, т.е. здесь слабо выражен гематоэнцефалический барьер, поэтому через стенки капилляров относительно легко проникают гормоны и другие физиологически активные вещества. Гипоталамус высоко чувствителен к нейровирусным инфекциям, интоксикациям, гуморальным сдвигам.

У человека гипоталамус окончательно созревает к возрасту 13-14 лет, когда заканчивается формирование гипоталамо-гипофизарных нейросекреторных связей. За счет мощных афферентных связей с обонятельным мозгом, базальными ганглиями, таламусом, гиппокампом, корой большого мозга гипоталамус получает информацию о состоянии практически всех структур мозга. В то же время гипоталамус посылает информацию к таламусу, ретикулярной формации, вегетативным центрам ствола мозга и спинного мозга.

Нейроны гипоталамуса имеют специфику функций и высоко чувствительны к составу омывающей их крови, они способны к нейросекреции пептидов, нейромедиаторов и др.

Влияние на симпатическую и парасимпатическую регуляцию позволяет гипоталамусу воздействовать на вегетативные функции организма гуморальным и нервным путями. Во многих руководствах отмечается, что раздражение ядер передней группы сопровождается парасимпатическими эффектами, а раздражение ядер задней группы вызывает симпатические эффекты в работе органов. Эти представления устарели, т.к. в гипоталамусе нейронные ансамбли, расположенные в разных его отделах, могут вовлекаться в реализацию регуляторных процессов в зависимости от сенсорной или биологической модальностей воздействий. Все структуры гипоталамуса способны в разной степени вызывать симпатические и парасимпатические эффекты. Следовательно, между структурами гипоталамуса существуют функциональные взаимодополняющие, взаимокомпенсирующие отношения.

В целом за счет большого количества связей, полифункциональности структур гипоталамус выполняет интегрирующую функцию вегетативной, соматической и эндокринной регуляции, что проявляется и в организации его ядрами ряда конкретных функций. Так, в гипоталамусе располагаются центры гомеостаза, теплорегуляции, голода (латеральный отдел) и насыщения (вентромедиальный), жажды и ее удовлетворения, полового поведения, страха, ярости, регуляции цикла бодрствование -- сон. Все эти центры реализуют свои функции путем активации или торможения вегетативного отдела нервной системы, эндокринной системы, структур ствола и переднего мозга. Нейроны ядер передней группы гипоталамуса продуцируют вазопрессин, или антидиуретический гормон (АДГ), окситоцин и другие пептиды, которые по аксонам попадают в заднюю долю гипофиза -- нейрогипофиз.

Нейроны ядер срединной группы гипоталамуса продуцируют так называемые рилизинг-факторы (либерины) и ингибирующие факторы (статины), которые регулируют активность передней доли гипофиза -- аденогипофиз. В нем образуются тропные гормоны (соматотропный, тиреотропный, адренокортикотропный и другие гормоны). Наличие такого набора пептидов в структурах гипоталамуса свидетельствует о присущей им нейросекреторной функции.

Нейроны гипоталамуса высокочувствительны к изменениям температуры крови, электролитного состава и осмотического давления плазмы, количества и состав гормонов крови и принимают прямое или опосредованное влияние в сохранении гомеостатических констант

Олдс (Olds) описал поведение крыс, которым вживляли электроды в ядра гипоталамуса и давали возможность самостоятельно стимулировать эти ядра. Оказалось, что стимуляция некоторых ядер приводила к реакции избегания, т.е. животное после однократной стимуляции больше не подходили к педали, замыкающей стимулирующий ток. При стимуляции других ядер животные нажимали на педаль часами, не обращая внимания на пищу, воду и др. Это так называемая реакция сомостимуляции, обусловлена она раздражение позитивных (положительных) эмоциогенных структур мозга.

Дельгадо (Delgado) во время хирургических операций, у человека обнаружил, что раздражение аналогичных участков вызывало эйфорию, эротические переживания. В клинике показано также, что патологические процессы в гипоталамусе могут сопровождаться ускорением полового созревания, нарушением менструального цикла, половой функции.

Раздражение передних отделов гипоталамуса может вызывать у животных пассивно-оборонительную реакцию, а раздражение вентромедиального ядра - ярость, агрессию или страх; раздражение заднего гипоталамуса вызывает также активную агрессию. При этом повышается артериальное давление, внутриглазное давление, увеличивается содержание гормонов надпочечников (адреналина, кортизола), т.е. проявляются признаки эмоционального стресса.

Уколы в области гипоталамуса вызывают глюкозурию, полиурию. В ряде случаев раздражение вызывало нарушение теплорегуляции: животные становились пойкилотермными, у них не возникало лихорадочное состояние.

Гипоталамус является также центром регуляции цикла бодрствование -- сон. При этом задний гипоталамус активизирует бодрствование, стимуляция переднего вызывает сон. Повреждение заднего гипоталамуса может вызвать так называемый летаргический сон.

Особое место в функциях гипоталамуса занимает регуляция деятельности гипофиза. В гипоталамусе и гипофизе образуются также нейрорегуляторные пептиды -- энкефалины, эндорфины, обладающие морфиноподобным действием и способствующие снижению стресса и т.д.

Базальные ядра -- стрио-паллидарная система.

Базальные (подкорковые) ядра головного мозга располагаются под белым веществом внутри переднего мозга, преимущественно в лобных долях. К базальным ядрам относят хвостатое ядро (nucleus caudatus), скорлупу (putamen), ограду (claustrum), бледный шар (globus pallidus).

Хвостатое ядро и скорлупа являются эволюционно более поздними, чем бледный шар и функционально оказывают на него тормозящее влияние.

Нисходящие связи они получают преимущественно от экстрапирамидной коры через подмозолистый пучок. Другие поля коры большого мозга также посылают большое количество аксонов к хвостатому ядру и скорлупе.

Основная часть аксонов этих образований идет к бледному шару, отсюда -- к таламусу и от последнего к сенсорным полям. Между этими образованиями имеется замкнутый круг связей. Они имеют также функциональные связи со структурами, лежащими вне этого круга: с черной субстанцией, красным ядром, люисовым телом, ядрами преддверия, мозжечком.

Множество связей хвостатого ядра и скорлупы указывают на участие в интегративных процессах, организации и регуляции движений, регуляции работы вегетативных органов. Различные участки коры головного мозга оказывают неодинаковое влияние на активность нейронов хвостатого ядра. Раздражение поля 8 коры большого мозга вызывает возбуждение нейронов его, а поля 6 -- возбуждение нейронов хвостатого ядра и скорлупы. Одиночное раздражение сенсомоторной области коры большого мозга может вызывать возбуждение или торможение активности нейронов хвостатого ядра.

Медиальные ядра таламуса имеют прямые связи с хвостатым ядром, показателем чего является активация нейронов через 2-4 мс после раздражения таламуса. Активацию нейронов вызывают раздражения кожи, световые, звуковые стимулы.

Во взаимодействиях хвостатого ядра и бледного шара превалируют тормозные влияния. Если раздражать хвостатое ядро, то большая часть нейронов бледного шара тормозится, а меньшая возбуждается. В случае повреждения хвостатого ядра у животного появляется двигательная гиперактивность.

Взаимодействие черного вещества и хвостатого ядра основано на прямых и обратных связях между ними. Установлено, что стимуляция хвостатого ядра усиливает активность нейронов черного вещества. Стимуляция черного вещества приводит к увеличению, а разрушение -- к уменьшению количества дофамина в хвостатом ядре. Установлено, что дофамин синтезируется в клетках черного вещества, а затем со скоростью 0,8 мм/ч транспортируется к синапсам нейронов хвостатого ядра. В хвостатом ядре в 1 г нервной ткани накапливается до 10 мкг дофамина, что в 6 раз больше, чем в других отделах переднего мозга, бледном шаре, в 19 раз больше, чем в мозжечке. Благодаря дофамину проявляется растормаживающий механизм взаимодействия хвостатого ядра и бледного шара.

При недостатке дофамина в хвостатом ядре (например, при дисфункции черного вещества) бледный шар растормаживается, активизирует спинно-стволовые системы, что приводит к двигательным нарушениям в виде ригидности мышц гиперкинезов, тремора.

Кортико-стриарные связи топически локализованы. Так, передние области мозга связаны с головкой хвостатого ядра. Патология, возникающая в одной из взаимосвязанных областей кора -- хвостатое ядро, функционально компенсируется сохранившейся структурой.

Хвостатое ядро и бледный шар принимают участие в таких интегративных процессах, как условнорефлекторная деятельность, двигательная активность. Это выявляется при стимуляции хвостатого ядра, скорлупы и бледного шара, деструкции и при регистрации электрической активности. Прямое раздражение некоторых зон хвостатого ядра вызывает поворот головы в сторону, противоположную раздражаемому полушарию, животное начинает двигаться по кругу, т.е. возникает так называемая циркуляторная реакция.

Раздражение других областей хвостатого ядра и скорлупы вызывает прекращение всех видов активности человека или животного: ориентировочной, эмоциональной, двигательной, пищевой. При этом в коре большого мозга наблюдается медленноволновая активность.

У человека стимуляция хвостатого ядра во время нейрохирургической операции нарушает речевой контакт с больным: если больной что-то говорил, то он замолкает, а после прекращения раздражения не помнит, что к нему обращались. В случаях травм головного мозга с раздражением головки хвостатого ядра у больных отмечается ретро-, антеро- или ретроантероградная амнезия.

У таких животных, как обезьяны, раздражения хвостатого ядра на разных этапах реализации условного рефлекса приводят к торможению выполнения данного рефлекса. Например, если у обезьяны через вживленные электроды раздражать хвостатое ядро перед подачей условного сигнала, то обезьяна не реагирует на сигнал, как будто не слышала его; раздражение ядра после того, как обезьяна на сигнал направляется к кормушке или уже начинает брать пищу из кормушки, приводит к остановке животного, после прекращения раздражения обезьяна, не завершив условной реакции, возвращается на место, т.е. она «забывает», что был раздражающий сигнал (ретроградная амнезия).

Раздражение хвостатого ядра может полностью предотвратить восприятие болевых, зрительных, слуховых и других видов стимуляции. Раздражение вентральной области хвостатого ядра снижает, а дорсальной -- повышает слюноотделение.

При стимуляции хвостатого ядра удлиняются латентные периоды рефлексов, нарушается переделка условных рефлексов. Выработка условных рефлексов на фоне стимуляции хвостатого ядра становится невозможной. Видимо, это объясняется тем, что стимуляция хвостатого ядра вызывает торможение активности коры большого мозга.

Ряд подкорковых структур также получает тормозное влияние хвостатого ядра. Наиболее специфичным для раздражения хвостатого ядра является преимущественно торможение активности коры большого мозга, подкорковых образований, торможение безусловного и условнорефлекторного поведения.

В то же время при раздражении хвостатого ядра могут появляться некоторые виды изолированных движений. Видимо, хвостатое ядро имеет наряду с тормозящими и возбуждающие структуры.

Выключение хвостатого ядра сопровождается развитием гиперкинезов типа непроизвольных мимических реакций, тремора, атетоза, хореи (подергивания конечностей; туловища, как при некоординированном танце), двигательной гиперактивности в форме бесцельного перемещения с места на место.

В случае повреждения хвостатого ядра наблюдаются существенные расстройства высшей нервной деятельности, затруднение ориентации в пространстве, нарушение памяти, замедление роста организма. После двустороннего повреждения хвостатого ядра условные рефлексы исчезают на длительный срок, выработка новых рефлексов затрудняется, общее поведение отличается застойностью, инертностью, трудностью переключений. У обезьян после одностороннего повреждения хвостатого ядра условная реакция восстанавливалась через 30-50 дней, латентные периоды рефлексов удлинялись, появлялись межсигнальные реакции. Двустороннее повреждение приводило к полному торможению условных рефлексов. Видимо, двустороннее повреждение истощает компенсаторные механизмы.

При воздействиях на хвостатое ядро, помимо нарушений высшей нервной деятельности, отмечаются расстройства движения. Многие авторы отмечают, что у разных животных при двустороннем повреждении полосатого тела появляется безудержное стремление двигаться вперед, при одностороннем -- возникают манежные движения. Несмотря на большое функциональное сходство хвостатого ядра и скорлупы, имеется ряд функций, специфичных для последней.

Эволюционно скорлупа появляется раньше хвостатого ядра), зачатки есть уже у рыб). Для скорлупы характерно участие в организации пищевого поведения: поиска, направленности к пище, захвата и -владения пищей. При нарушениях функции скорлупы возникает ряд нарушений трофики кожи, внутренних органов. Раздражения скорлупы приводят к изменениям дыхания, слюноотделения, к нарушениям условнорефлекторной деятельности.

12. Бледный шар

нервный спинной мозг гипоталамус

Бледный шар (globus pallidus s. pallidum) принимает участие в осуществлении простых и сложных рефлексов. Это, по - видимому, обеспечивается за счет связей бледного шара с таламусом, скорлупой, хвостатым ядром, средним мозгом, гипоталамусом, соматосенсорной системой и др.

Раздражение бледного шара через вживленные электроды вызывает сокращение мышц конечностей. У больных с гиперкинезами раздражение разных отделов бледного шара (в зависимости от места и частоты раздражения) увеличивало или снижало гиперкинез. Стимуляция бледного шара не вызывает торможения, а провоцирует ориентировочную реакцию, движения конечностей, пищевое поведение (обнюхивание, жевание, глотание и т.д.).

Повреждение бледного шара вызывает у людей обеднение мимики, маскообразность лица, тремор головы, конечностей, который усиливается при движениях, монотонность речи, «эмоциональную тупость»; наблюдаются быстрые подергивания мышц отдельных групп или отдельных мышц рук, спины, лица.

У человека при нарушении функций бледного шара затруднено начало движений, вставание, нарушаются содружественные движения рук при ходьбе, появляется симптом длительной подготовки к движению, затем быстрое движение и остановка. Такие циклы у больных повторяются многократно.

Ограда (claustrum) содержит нейроны разных типов, образуя связи главным образом с корой большого мозга.

Во время стимуляции ограды появляется ориентировочная реакция, в виде поворота головы в сторону раздражения, жевательные, глотательные, иногда рвотные движения. Раздражение ограды тормозит условный рефлекс на свет, мало сказывается на условном рефлексе на звук, затормаживает захват и поедание пищи. Известно, что толщина ограды левого полушария у человека несколько больше, чем правого; при повреждении ограды правого полушария наблюдаются расстройства речи.

Подводя итог вышеизложенному, можно отметить, что базальные ядра выполняют интегративные в организации моторики, эмоций, высшей нервной деятельности, эти функции могут быть усилены или заторможены при активации отдельных образований базальных ядер.

Размещено на Allbest.ru


Подобные документы

  • Роль центральной нервной системы в интегративной, приспособительной деятельности организма. Нейрон как структурная и функциональная единица ЦНС. Рефлекторный принцип регуляции функций. Нервные центры и их свойства. Изучение видов центрального торможения.

    презентация [7,2 M], добавлен 30.04.2014

  • Основные вопросы физиологии центральной нервной системы и высшей нервной деятельности в научном плане. Роль механизмов работы мозга, лежащих в основе поведения. Значение знаний по анатомии и физиологии ЦНС для практических психологов, врачей и педагогов.

    реферат [20,9 K], добавлен 05.10.2010

  • Основные типы нейронов. Реакция организма на раздражение из внешней или внутренней среды. Раздражение чувствительного нерва. Основные закономерности в деятельности центральной нервной системы. Распространение нервных импульсов. Анатомия спинного мозга.

    презентация [425,1 K], добавлен 27.02.2014

  • Методы исследования функции центральной нервной системы. Рефлексы человека, имеющие клиническое значение. Рефлекторный тонус скелетных мышц (опыт Бронджиста). Влияние лабиринтов на тонус мускулатуры. Роль отделов ЦНС в формировании мышечного тонуса.

    методичка [34,3 K], добавлен 07.02.2013

  • Основные отличия вегетативной от центральной нервной системы. Функционирование симпатической нервной системы. Функции ядер спинного мозга и ствола мозга, которые контролируются вегетативными центрами. Дуга вегетативного рефлекса, ее особенности.

    презентация [12,9 M], добавлен 15.02.2014

  • Классификация, строение и значение нервной системы. Структура и функции центральной нервной системы. Морфология и принципы формирования корешка спинного мозга. Клеточно-тканевой состав и топография проводящих путей серого и белого веществ спинного мозга.

    методичка [1,7 M], добавлен 24.09.2010

  • Электрический компонент возбуждения нервных и большинства мышечных клеток. Классическое исследование параметров и механизма потенциала действия центральной нервной системы. Функции продолговатого мозга и варолиевого моста. Основные болевые системы.

    реферат [22,9 K], добавлен 02.05.2009

  • Виды нервной ткани в организме: нейроны и нейроглии. Классификация нейронов по функциям: чувствительные, ассоциативные и двигательные. Характеристика периферической (соматической и вегетативной) и центральной нервной системы. Строение спинного мозга.

    презентация [2,4 M], добавлен 07.04.2014

  • Основные функции центральной нервной системы. Структура и функция нейронов. Синапс как место контакта двух нейронов. Рефлекс как основная форма нервной деятельности. Сущность рефлекторной дуги и ее схема. Физиологические свойства нервных центров.

    реферат [392,2 K], добавлен 23.06.2010

  • Особенности строения и функции спинного мозга. Функции спинномозговых корешков. Рефлекторные центры спинного мозга. Зрительные бугры как центр всех афферентных импульсов. Рефлекторная и проводниковая функции продолговатого мозга. Виды зрительных бугров.

    реферат [291,0 K], добавлен 23.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.