Анатомия человека

Передняя доля гипофиза. Влияние гормонов на рост, развитие, обмен веществ. Гормоны коркового и мозгового вещества надпочечников. Возрастные особенности строения и функции отделов центральной нервной системы. Общая характеристика органов кровообращения.

Рубрика Медицина
Вид шпаргалка
Язык русский
Дата добавления 15.04.2014
Размер файла 199,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Различают простые и сложные рефлекторные дуги. Простая рефлекторная дуга состоит из чувствительного, двигательного и одного вставочного нейронов. Рецептор, воспринимающий раздражение, передает нервный импульс к телу первого нейрона (афферентного), который находится в спинномозговом узле или чувствительном узле черепного нерва. Нервный импульс следует в спинной (серое вещество) или головной (ядра головного мозга) мозг и образует синапс с телом вставочного нейрона, который контактирует с эфферентным нейроном. Аксон этого нейрона выходит из спинного или головного мозга в составе передних (двигательных) корешков спинномозгового или черепного нервов и направляется к рабочему органу. В сложной рефлекторной дуге между афферентными и эфферентными нейронами располагаются два и более вставочных нейрона.

ВНД ребенка от рождения до 7 лет. Ребенок рождается с набором безусловных рефлексов, рефлекторные дуги которых начинают формироваться на 3м месяце внутриутробного развития. Тогда у плода появляются первые сосательные и дыхательные движения, а активное движение плода наблюдается на 45м месяце. К моменту рождения у ребенка формируется большинство врожденных рефлексов, которые обеспечивают ему нормальное функционирование вегетативной сферы.

Возможность простых пищевых условных реакций возникает уже на 12е сутки, а к концу первого месяца развития образуются условные рефлексы с двигательного анализатора и вестибулярного аппарата.

Со 2го месяца жизни образуются слуховые, зрительные и тактильные рефлексы, а к 5му месяцу развития у ребенка вырабатываются все основные виды условного торможения. Большое значение в совершенствовании условнорефлекторной деятельности имеет обучение ребенка. Чем раньше начато обучение, т. е. выработка условных рефлексов, тем быстрее идет их формирование впоследствии.

К концу 1го года развития ребенок относительно хорошо различает вкус пищи, запахи, форму и цвет предметов, различает голоса и лица. Значительно совершенствуются движения, некоторые дети начинают ходить. Ребенок пытается произносить отдельные слова, и у него формируются условные рефлексы на словесные раздражители. Следовательно, уже в конце первого года полным ходом идет развитие второй сигнальной системы и формируется ее совместная деятельность с первой.

На 2м году развития ребенка совершенствуются все виды условнорефлекторной деятельности, и продолжается формирование второй сигнальной системы, значительно увеличивается словарный запас; раздражители или их комплексы начинают вызывать словесные реакции. Уже у двухгодовалого ребенка слова приобретают сигнальное значение.

2й и 3й год жизни отличаются живой ориентировочной и исследовательской деятельностью. Этот возраст ребенка характеризуется «предметным» характером мышления, т. е. решающим значением мышечных ощущений. Эта особенность в значительной степени связана с морфологическим созреванием мозга, так как многие моторные корковые зоны и зоны кожномышечной чувствительности уже к 12 годам достигают достаточно высокой функциональной полноценности. Основным фактором, стимулирующим созревание этих корковых зон, являются мышечные сокращения и высокая двигательная активность ребенка.

Период до 3х лет характеризуется также легкостью образования условных рефлексов на самые различные раздражители. Примечательной особенностью 23летнего ребенка является легкость выработки динамических стереотипов - последовательных цепей условнорефлекторных актов, осуществляющихся в строго определенном, закрепленном во времени порядке. Динамический стереотип это следствие сложной системной реакции организма на комплекс условных раздражителей (условный рефлекс на время - прием пищи, время сна и др.).

Возраст от 3х до 5ти лет характеризуется дальнейшим развитием речи и совершенствованием нервных процессов (увеличивается их сила, подвижность и уравновешенность), процессы внутреннего торможения приобретают доминирующее значение, но запаздывательное торможение и условный тормоз вырабатываются с трудом.

К 57 годам еще более повышается роль сигнальной системы слов и дети начинают свободно говорить. Это обусловлено тем, что только к семи годам постнатального развития функционально созревает материальный субстрат второй сигнальной системы - кора больших полушариев.

ВНД детей от 7 до 18 лет. Младший школьный возраст (с 7 до 12 лет) - период относительно «спокойного» развития ВНД. Сила процессов торможения и возбуждения, их подвижность, уравновешенность и взаимная индукция, а также уменьшение силы внешнего торможения обеспечивают возможности широкого обучения ребенка. Но только при обучении письму и чтению слово становится предметом сознания ребенка, все, более отдаляясь от связанных с ним образов, предметов и действий. Незначительное ухудшение процессов ВНД наблюдается только в 1м классе в связи с процессами адаптации к школе.

Особое значение для педагогов имеет подростковый (с 1112 до 1517 лет) период. В это время нарушается уравновешенность нервных процессов, большую силу приобретает возбуждение, замедляется прирост подвижности нервных процессов, значительно ухудшается дифференцировка условных раздражителей. Ослабляется деятельность коры, а вместе с тем и второй сигнальной системы. Все функциональные изменения приводят к психической неуравновешенности и конфликтности подростка.

Старший школьный возраст (1518 лет) совпадает с окончательным морфофункциональным созреванием всех систем организма. Повышается роль корковых процессов в регуляции психической деятельности и функций второй сигнальной системы. Все свойства нервных процессов достигают уровня взрослого человека, т. е. ВНД старших школьников становится упорядоченной и гармоничной. Таким образом, для нормального развития ВНД на каждом отдельном этапе онтогенеза необходимо создание оптимальных условий.

Возрастные особенности строения и функции отделов центральной нервной системы (спинной мозг, продолговатый, средний, задний)

Спинной мозг лежит в позвоночном канале и у взрослых представляет собой длинный (45 см у мужчин и 41 см у женщин), несколько сплюснутый спереди назад цилиндрический тяж, который вверху переходит в продолговатый мозг, а внизу заканчивается мозговым конусом (рис. 46). От мозгового конуса отходит концевая нить, представляющая собой атрофированную часть спинного мозга, состоящую из продолжения оболочек спинного мозга и прикрепляющуюся ко II копчиковому позвонку.

Спинной мозг новорожденного имеет длину 14 см. Нижняя граница находится на уровне II поясничного позвонка. К 2 годам длина спинного мозга увеличивается до 20 см, а к 10 годам -- до 28 см. Наиболее быстро растут грудные сегменты. Масса спинного мозга у новорожденного составляет 5 г, в год -- 10 г, в 3 года -- 13 г, в 7 лет -- 19 г, в 14 лет -- 22 г.

На своем протяжении спинной мозг имеет два утолщения, соответствующие корешкам нервов верхней и нижней конечностей. Верхнее называется шейным утолщением, нижнее -- поясничнокрестцовым. Более обширно последнее, но более дифференцировано первое, так как иннервация руки сложнее. В центре спинного мозга проходит канал, представляющий собой узкую щель, заполненную спинномозговой жидкостью. Спинной мозг делится на не полностью симметричные правую и левую половины. У новорожденного центральный канал шире, чем у взрослого. Его просвет уменьшается в течение первых двух лет жизни и в другие периоды, когда увеличивается масса белого и серого вещества. На боковых поверхностях спинного мозга симметрично входят задние (афферентные) и выходят передние (эфферентные) корешки спинномозговых нервов. Линии входа и выхода делят каждую половину на три канатика спинного мозга (передний, боковой и задний).

С двух сторон из спинного мозга выходят двумя продольными рядами корешки 31 пары спинномозговых нервов. В спинном мозге 31 сегмент, из которых 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых, один копчиковый. Передние корешки спинномозговых нервов состоят из аксонов двигательных нейронов, тела которых лежат в спинном мозге. Задние корешки содержат отростки чувствительных нейронов, тела которых располагаются в спинномозговых узлах. На некотором расстоянии от спинного мозга передние и задние корешки соединяются и образуют спинномозговой нерв. Ствол нерва очень короткий, так как при выходе из межпозвоночного отверстия он распадается на ветви. В межпозвоночных отверстиях вблизи соединения обоих корешков задний корешок имеет утолщение -- спинномозговой узел, содержащий тела чувствительных нейронов с одним отростком, который делится на две ветви. Одна из них (центральная) идет в составе заднего корешка в спинной мозг, другая (периферическая) -- продолжается в спинномозговой нерв. В узле отсутствуют синапсы, так как лежат только афферентные нейроны.

Участок спинного мозга, соответствующий каждой паре корешков, называется сегментом (рис. 47). Спинной мозг состоит из серого вещества, содержащего нервные клетки, и белого вещества, образованного нервными волокнами. Серое вещество расположено внутри спинного мозга и со всех сторон окружено белым веществом. Объем его увеличивается быстрее в первые два года жизни ребенка. На поперечном разрезе серое вещество напоминает букву Н. Оно образует две вертикальные колонны, помещенные в правой и левой половинах спинного мозга. Посередине находится центральный канал со спинномозговой жидкостью. Сверху он сообщается с четвертым желудочком головного мозга, а внизу заканчивается концевым желудочком. В каждой колонне есть передние и задние рога, причем первые шире вторых. На протяжении грудного отдела и в I--III сегментах поясничного отдела спинного мозга, помимо передних и задних рогов, имеются боковые рога, состоящие из симпатических нервных клеток. В них заложены тела нейронов, иннервирующих внутренние органы. Их аксоны идут в составе передних корешков. В передних рогах находятся двигательные нервные клетки, а в задних рогах -- вставочные нейроны. Чувствительные нервные клетки расположены не в спинном мозге, а по ходу чувствительных нервов в межпозвоночных отверстиях -- в спинномозговых узлах.

Белое вещество образовано нервными отростками, организованными в проводящие пути. По проводящим путям проходят импульсы в восходящем направлении от чувствительных и вставочных нейронов и в нисходящем -- от клеток вышележащих нервных центров к двигательным нейронам.

Задние канатики содержат восходящие пути, представленные тонким и клиновидным пучками. Они проводят к коре головного мозга сознательную проприоцептивную (мышечносуставное чувство), кожную чувствительность (чувство стереогноза -- узнавание предметов

Боковые канатики содержат восходящие и нисходящие пути. Восходящие пути представлены задним и передним спиномозжечковыми путями, проводящими бессознательные проприоцептивные импульсы к мозжечку (бессознательная координация движения); спинопокрышечным и боковым спинобугорным путем (болевая и температурная чувствительность). К нисходящим путям относятся латеральноспинномозговой (пирамидный) путь, проводящий сознательные двигательные импульсы, и красноядерноспинномозговой путь, проводящий непроизвольные двигательные импульсы.

Передние канатики содержат нисходящие пути: передний корковоспинномозговой (пирамидный), проводящий двигательные импульсы; тектоспинномозговой, осуществляющий защитные движения при зрительных и слуховых раздражениях; предцверноспинномозговой, проводящий импульсы, обеспечивающие равновесие тела; ретикулоспинномозговой.

В спинном мозге замыкается большое количество рефлексов, регулирующих как соматические, так и вегетативные функции организма. Наиболее простые -- это сухожильные рефлексы и рефлексы растяжения, имеющие моносинаптический характер. Сухожильные рефлексы вызываются ударом по сухожилию и имеют диагностическое значение в неврологической практике. Рефлекторная реакция проявляется в виде резкого сокращения мышцы. К сухожильным относятся коленный рефлекс, ахиллов рефлекс, рефлексы двуглавой и трехглавой мышц верхней конечности, рефлексы нижней челюсти.

Более сложный характер имеют сгибательные рефлексы и рефлексы положения. Сгибательные рефлексы направлены на избежание различных повреждающих воздействий. Ритмические рефлексы характеризуются скоординированной работой мышц конечностей и туловища, правильным чередованием сгибания и разгибания конечностей. Позные рефлексы направлены на поддержание определенной позы, что возможно лишь при наличии определенного мышечного тонуса.

Кроме замыкания соматических рефлексов спинной мозг обеспечивает рефлекторную регуляцию внутренних органов, являясь центром висцеральных рефлексов. Эти рефлексы осуществляются с помощью расположенных в боковых рогах серого вещества нейронов вегетативной нервной системы. Аксоны этих нейронов покидают спинной мозг через передние корешки и заканчиваются на клетках ганглиев. Ганглионарные нейроны, в свою очередь, посылают аксоны к клеткам различных внутренних органов, в том числе к гладким мышцам кишечника, сосудов, мочевого пузыря, к железистым клеткам и сердечной мышце

Спинной мозг имеет твердую, паутинную и мягкую соединительнотканные оболочки, продолжающиеся в такие же оболочки головного мозга.

Твердая (наружная) мозговая оболочка обтекает его снаружи в виде мешка. Она не прилегает вплотную к стенкам позвоночного канала, которые покрыты надкостницей. Между надкостницей и твердой оболочкой находится эпидуральное пространство. В нем залегают жировая клетчатка и венозные сплетения. Вверху твердая оболочка срастается с краями большого отверстия затылочной кости, внизу на уровне II--III крестцовых позвонков суживается в виде нити и прикрепляется к копчику. Твердая оболочка мозга у новорожденного тонкая, сращена с костями, отростки оболочки развиты слабо.

Паутинная (средняя) мозговая оболочка в виде тонкого прозрачного бессосудистого листка прилегает изнутри к твердой оболочке. Между твердой и паутинной оболочками находится субдуральное пространство. Между паутинной и внутренней оболочкой находится подпаутинное пространство, в котором мозг и корешки лежат свободно и окружены большим количеством спинномозговой жидкости. Жидкость подпаутинного пространства спинного мозга непрерывно сообщается с жидкостью подпаутинных пространств головного мозга и мозговых желудочков. У детей подпаутинное пространство относительно большое. Его вместимость у новорожденного составляет около 20 см3, а затем быстро увеличивается: к концу первого года жизни -- 30 см3, к 8 годам -- 140 см3, у взрослого человека -- 200 см3.

Мягкая (внутренняя) мозговая оболочка непосредственно обтекает спинной мозг. Между двумя своими листками она содержит сосуды, вместе с которыми входит в борозды и мозговое вещество спинного мозга. Паутинная и мягкая оболочки у новорожденных тонкие, нежные.

Продолговатый мозг является непосредственным продолжением спинного мозга и в основном сохраняет его форму и строение. Продолговатый мозг имеет вид луковицы. Верхний расширенный конец его граничит с мостом, а нижней границей служит уровень большого отверстия затылочной кости. На передней поверхности продолговатого мозга расположена передняя срединная щель. По бокам от нее находятся пирамиды, состоящие из двигательных пирамидных путей, соединяющих головной мозг со спинным. Составляющие пирамиды пучки нервных волокон частично перекрещиваются в глубине срединной щели на границе со спинным мозгом, после чего опускаются в боковом канатике на противоположной стороне спинного мозга. На вентральной стороне, вокруг срединной щели, проходят пучки волокон прямого пирамидного пути, которые не перекрещиваются и спускаются в переднем канатике спинного мозга. Латерально от пирамид лежит овальное возвышение -- олива. На задней поверхности продолговатого мозга расположена задняя срединная борозда. По ее сторонам находятся ядра тонкого и клиновидного пучков, располагающиеся в одноименных бугорках. На задней поверхности находится нижняя часть ромбовидной ямки, где лежат ядра черепномозговых нервов (IX--XII пары). С боков ромбовидную ямку ограничивают ножки мозжечка.

Продолговатый мозг возник в связи с развитием органов гравитации и слуха. Поэтому в нем заложены ядра серого вещества, имеющие отношение к равновесию, координации движений, регуляции обмена веществ, дыхания и кровообращения. Серое вещество продолговатого мозга представлено дыхательным центром, сосудодвигательным центром, ядрами четырех пар (IX--XII) черепных нервов, ядром оливы и ретикулярной формацией. Ядро оливы имеет вид изогнутой пластинки серого вещества, связано с зубчатым ядром мозжечка и является промежуточным ядром равновесия. Ретикулярная формация представляет собой совокупность клеток и нервных волокон, расположенных в стволе мозга и образующих сеть. Ретикулярная формация связана со всеми органами чувств, двигательными и чувствительными областями коры большого мозга, таламусом и гипоталамусом, спинным мозгом. Она регулирует уровень возбудимости и тонуса различных отделов ЦНС, включая кору большого мозга, участвует в регуляции уровня сознания, эмоций, сна и бодрствования, вегетативных функций, целенаправленных движений.

Белое вещество продолговатого мозга содержит длинные и короткие пути. К длинным относятся проходящие в передних канатиках спинного мозга нисходящие пирамидные пути, которые частично перекрещиваются в области пирамид. Кроме того, в задних канатиках проходят восходящие чувствительные пути. К коротким путям относятся пучки нервных волокон, соединяющие отдельные ядра серого вещества продолговатого мозга с соседними отделами головного мозга, а также между собой. Необходимость реализации жизненно важных функций, ядра которых располагаются в продолговатом мозге, с момента рождения ребенка определяют степень зрелости его структур уже в период новорожденности. К 7 годам созревание ядер продолговатого мозга в основном заканчивается.

Продолговатый мозг выполняет многообразные функции, многие из которых являются жизненно важными. Рефлекторные соматические реакции направлены на под держание позы. Эти рефлексы связаны с рецепторами вестибулярного аппарата и полукружных каналов. Различают две группы рефлексов позы: статические и статокинетические. Статические рефлексы разделяются на рефлексы положения и рефлексы выпрямления. Рефлексы положения обеспечивают изменение тонуса мышц при перемене положения тела в пространстве. Рефлексы выпрямления определяют перераспределение тонуса мышц, приводящее к восстановлению естественной позы в случае ее изменения. Наиболее сложный характер имеют статокинетические рефлексы, направленные на сохранение позы и ориентацию в пространстве при изменении скорости движения. Кроме осуществления двигательных рефлексов активация вестибулярного аппарата приводит к возбуждению вегетативных центров. Возникающие при этом вестибуловегетативные рефлексы приводят к изменениям дыхания, частоты сердечных сокращений, деятельности желудочнокишечного тракта («морская болезнь»). Для ядер продолговатого мозга характерны двигательные пищевые рефлексы: жевание и проглатывание пищи.

Вегетативные ядра продолговатого мозга относятся к парасимпатическому отделу нервной системы и осуществляют рефлекторный контроль дыхания, деятельности сердца, тонуса сосудов, функции пищеварительных желез. Нервные клетки дыхательного центра находятся в ретикулярной формации в области четвертого желудочка головного мозга. Повреждение этой зоны приводит к остановке дыхания. Вторым жизненно важным центром ретикулярной формации продолговатого мозга являются центры, регулирующие деятельность сердца и тонус сосудов. Раздражение одних участков ретикулярной формации вызывает увеличение тонуса сосудов и повышение артериального давления, раздражение других -- расширение сосудов и падение артериального давления.

Таким образом, продолговатый мозг регулирует деятельность многих органов грудной и брюшной полости. Нормальное функционирование этого отдела центральной нервной системы жизненно необходимо. Повреждение других отделов нервной системы может протекать бессимптомно вследствие больших компенсаторных возможностей мозга, но малейшее повреждение продолговатого мозга приводит к тяжелым нарушениям жизнедеятельности и смерти.

Варолиев мост

Мост лежит спереди продолговатого мозга и имеет переднюю (выпуклую) и заднюю (плоскую) поверхности, которые образуют верхнюю часть ромбовидной ямки. Боковые его части сужены и являются ножками моста, соединяющими мост с мозжечком. Мост состоит из серого и белого вещества. Серое вещество находится внутри и представлено ядрами черепных нервов с V по VIII пары. Белое вещество располагается снаружи и состоит из продольных и поперечных волокон. Вся эта система проводящих путей связывает через мост кору больших полушарий с корой полушарий мозжечка. У новорожденного лучше развиты филогенетически более старые отделы мозга. Масса ствола мозга равна 10 г, что составляет 2,7 % массы тела (у взрослого 2%).

Мозжечок

Мозжечок находится позади продолговатого мозга и помещается под затылочными долями полушарий большого мозга, в черепной ямке. В нем различают боковые части, или полушария, и червь, расположенный между полушариями. В отличие от спинного мозга и ствола серое вещество (кора) находится на поверхности мозжечка, а белое -- внутри, под корой.

Серое вещество состоит из клеток, расположенных в три слоя: наружный (звездчатые и корзинчатые клетки), средний (крупные ганглиозные клетки) и внутренний, зернистый, слой (зернистые клетки, между которыми встречаются крупные звездчатые). В толще мозжечка имеются также парные ядра серого вещества, заложенные в каждом полушарии среди белого вещества. В области червя лежит ядро шатра, в полушариях, кнаружи от ядра шатра, -- шаровидные и пробковидные ядра. В центре полушарий находится зубчатое ядро, участвующее в осуществлении функции равновесия. При поражении тех или иных ядер наблюдаются различные нарушения двигательной функции. Разрушение ядра шатра сопровождается расстройством равновесия тела; повреждения червя, пробковидного и шаровидного ядер -- нарушением работы мускулатуры шеи и туловища; разрушение полушарий и зубчатого ядра -- нарушением работы мускулатуры конечностей.

Белое вещество мозжечка слагается из различного рода нервных волокон. Одни из них связывают извилины и дольки, другие идут от коры к внутренним ядрам мозжечка, а третьи соединяют мозжечок с соседними отделами мозга. Последние волокна образуют нижние, средние и верхние пары ножек. В составе нижних ножек к мозжечку подходят волокна от продолговатого мозга и олив. Они заканчиваются в коре червя и полушариях. Волокна средних ножек идут к мосту. Волокна верхних ножек направляются к крыше среднего мозга, проходят в обоих направлениях, связывают мозжечок с красным ядром и таламусом, а также со спинным мозгом.

У новорожденного масса мозжечка 20 г, что составляет 5,4 % массы тела. К 5 месяцам жизни она увеличивается в 3 раза, к 9 месяцам -- в 4 раза. В это время наиболее интенсивно развиваются полушария мозжечка. Усиленный рост мозжечка на первом году жизни определяется формированием в течение этого периода дифференцированных и координированных движений. В дальнейшем темпы его роста снижаются. К 15 годам мозжечок достигает размеров взрослого человека.

Мозжечок обеспечивает координацию движений. При поражениях его развиваются разнообразные нарушения двигательной активности и мышечного тонуса, а также вегетативные расстройства. Мозжечковая недостаточность связана с неспособностью поддерживать позу. Например, при смещении пассивно висящей конечности она не возвращается в исходное положение, а раскачивается подобно маятнику. Для мозжечковых повреждений характерны тремор, нарушение величины, скорости и направления движений, что приводит к утрате плавности и стабильности двигательных реакций. Целенаправленные движения (попытка взять предмет) выполняются порывисто, рывками, промахами мимо цели. Нарушение двигательной координации при поражениях мозжечка объясняется его тесными связями со стволом мозга, а также с таламусом и сенсомоторной областью коры больших полушарий. Таким образом, мозжечок получает разнообразную афферентную информацию от различных компонентов двигательного аппарата, обрабатывает ее и передает корригирующие влияния к нейронам ствола мозга и спинальным центрам моторного контроля. Кроме того, благодаря многочисленным синаптическим связям с ретикулярной формацией мозжечок играет важную роль в регуляции вегетативных функций.

Между продолговатым мозгом, мостом и мозжечком есть общая полость, получившая название «четвертый желудочек головного мозга», который напоминает палатку и имеет дно и крышу. Дно желудочка ромбовидной формы, как бы вдавлено в заднюю поверхность продолговатого мозга и моста, поэтому его еще называют ромбовидной ямкой. В заднюю часть ромбовидной ямки открывается центральный канал спинного мозга, а в передневерхнюю -- третий желудочек головного мозга. Посредством трех отверстий четвертый желудочек сообщается с подпаутинным пространством головного мозга, благодаря чему спинномозговая жидкость поступает из мозговых желудочков в межоболочечные пространства.

Средний мозг состоит из ножек мозга и крыши мозга. Они разделены сильвиевым водопроводом мозга, который соединяет третий и четвертый желудочки головного моза. Ножки мозга состоят из основания и покрышки, между которыми располагаются пигментированные клетки черной субстанции. Черная субстанция участвует в сложной координации движений. Основание ножек образует пирамидный путь. В покрышке ножек лежат ядра блокового и глазодвигательного нервов (III и IV пара черепных нервов). Также в ней располагается красное ядро, в котором заканчиваются верхние ножки мозжечка. В них идет восходящий путь к зрительному бугру и нисходящий -- красноядерноспинномозговой. Красное ядро отвечает за поддержание тонуса мускулатуры туловища и конечностей.

Четверохолмие, или крыша мозга, составляет заднюю часть среднего мозга. Перпендикулярными друг другу бороздами оно делится на верхние и нижние холмики. Верхнее двухолмие заключает в себе центры ориентировочных рефлексов на зрительные раздражения. Посредством отходящих вперед ручек холмики соединяются с латеральными коленчатыми телами промежуточного мозга. По этим ручкам идут волокна зрительного нерва. Нижнее двухолмие служит центром ориентировочных рефлексов на слуховые раздражения. От холмиков к медиальным коленчатым телам идут нижние ручки, по которым проходят волокна слухового нерва. Ядра четверохолмия играют важнейшую роль в раннем онтогенезе, обеспечивая первичные формы сенсорного внимания.

В среднем мозге замыкается ряд рефлексов. Нейроны бугров четверохолмия отвечают за ориентировочные зрительные и слуховые рефлексы. Ядра четверохолмия участвуют в осуществлении сторожевого рефлекса, что выражается в усилении тонуса сгибателей. Черная субстанция обеспечивает сложную координацию движений. В ней находятся содержащие дофамин нейроны, регулирующие эмоциональное поведение. Повреждение черной субстанции приводит к нарушению тонких движений пальцев рук, развитию тремора (болезнь Паркинсона). Красное ядро отвечает за тонус мышцсгибателей.

Зрительная, сенсорная система, строение, развитие. Возрастные изменения оптической системы глаза, аккомодации, остроты зрения, пространственного зрения, световой чувствительности и цветового зрения

Периферическим отделом зрительного анализатора является глазное яблоко. Удетей оно имеет шаровидную форму, у взрослых немного вытянутую в длину. Глазное яблоко у новорожденного большое: диаметр -- 17,5 мм, масса -- 2,3 г. Зрительная ось проходит латеральнее, чем у взрослого. Растет глазное яблоко быстрее всего на первом году жизни, к 5 годам масса его увеличивается на 70 %, к 20 годам -- в 3 раза. Глазное яблоко имеет ядро и три оболочки: наружную -- фиброзную, среднюю -- сосудистую и внутреннюю -- сетчатку.

Ядро состоит из стекловидного тела, хрусталика и водянистой влаги. Эти образования также являются преломляющими средами глаза.

Хрусталик представляет собой плотное тело в виде двояковыпуклой линзы. Край хрусталика называется экватором. Хрусталик не имеет сосудов и нервов, прозрачный и покрыт сверху капсулой. Спереди он соприкасается с радужкой, а сзади вдается в стекловидное тело. Укрепляется хрусталик ресничным пояском, при сокращении или расслаблении ресничного тела натяжение пояска изменяется и хрусталик изменяет свою форму. Это способствует приспособлению глаза к ясному видению и называется аккомодацией.

Стекловидное тело заполняет пространство между сетчаткой и хрусталиком. Оно плотно прилегает к сетчатке и фиксирует хрусталик, состоит из прозрачного студенистого межклеточного вещества и не имеет сосудов. Водянистая влага выделяется из кровеносных сосудов ресничных отростков и радужки. Она заполняет переднюю камеру глаза, расположенную между роговицей и радужкой, и заднюю камеру глаза, находящуюся между радужкой и хрусталиком. Камеры сообщаются через зрачок. Отток влаги осуществляется через венозный синус.

Фиброзная оболочка сзади (4/5) представлена белочной оболочкой (склерой), а спереди бессосудистой, прозрачной, сильно изогнутой роговицей.

Роговица состоит из плотной соединительной ткани. Спереди покрыта многослойным плоским неороговевающим эпителием, а сзади -- однослойным эндотелием. Кровеносные сосуды в роговице отсутствуют. Роговица у новорожденного относительно толстая, кривизна ее в течение жизни почти не менятся.

Белочная оболочка, или склера, также образована плотной соединительной тканью. Но в отличие от роговицы она непрозрачна, так как в ней содержится много эластичных и коллагеновых волокон. Границей между склерой и роговицей служит ободок--лимброговицы. Кроме того, на границе проходит венозный синус, по которому из глаза оттекает венозная кровь и лимфа. Эпителий роговицы здесь переходит в конъюнктиву. В задней части склеры в месте выхода зрительного нерва образуется решетчатая пластинка с многочисленными отверстиями. Здесь склера наиболее массивна и переходит в соединительнотканную оболочку зрительного нерва. Кровеносные сосуды проходят через склеру к сосудистой оболочке. К белочной оболочке прикрепляются четыре прямые мышцы глаза.

Сосудистая оболочка состоит из собственно сосудистой оболочки, ресничного тела и радужки.

Собственно сосудистая оболочка тонкая, богата сосудами, содержит темнокоричневый пигмент. С белочной соединяется рыхло, между ними располагаются лимфатические щели. Толщина собственно сосудистой оболочки составляет 0,2 мм, состоит она из надсосудистой пластинки, сосудистой пластинки и хориокапиллярной пластинки. Надсосудистая пластинка образована эндотелием, эластичными волокнами, пигментными клетками и нервными волокнами. Сосудистая пластинка содержит крупные вены, между которыми лежат соединительнотканные волокна и пигментные клетки. В хориокапиллярной пластинке залегают крупные капилляры синусоидного типа. Их больше всего в оболочке желтого пятна сетчатки. Благодаря особенностям строения капилляров кровь быстро переходит из артериального русла в венозное. Без резкой границы собственно сосудистая оболочка переходит в ресничное тело.

Ресничное тело имеет вид валика и вдается внутрь глазного яблока в месте перехода белочной оболочки в роговицу. От переднего края отходят около 70 ресничных отростков. Они переходят в упругие тонкие волоконца, прикрепляющиеся к капсуле хрусталика по экватору. У новорожденного хрусталик почти круглый. Особенно быстро он растет в течение первого года жизни. Волоконца, поддерживающие хрусталик, образуют ресничный поясок, или циннову связку. Внутри пояска находится водянистая влага. В ресничном теле располагаются гладкие мышечные волокна ресничной мышцы, обеспечивающей аккомодацию. Ресничное тело у новорожденного развито слабо, хотя в дальнейшем его рост и развитие идут быстро. Способность к аккомодации устанавливается к 10 годам.

Радужка имеет вид диска с отверстием посередине, стоящего позади прозрачной роговицы. Своим наружным краем она переходит в ресничное тело, а внутренним ограничивает зрачок. От количества и глубины залегания пигмента зависит ее окраска, которая бывает от светлоголубой до черной. Если пигмент полностью отсутствует (у альбиносов), то радужка имеет красноватый оттенок благодаря просвечивающимся кровеносным сосудам. У новорожденного радужка выпуклая кпереди, пигмента в ней мало. К 2 годам ее толщина увеличивается и количество пигмента возрастает. Вокруг зрачка располагаются радиальные мышцы, расширяющие зрачок, и круговые мышцы, суживающие его. Таким образом, зрачок по функции является диафрагмой, регулирующей поступление света в глаз. После рождения диаметр зрачка составляет 2,0 мм, к 2 годам он достигает 2,5--3,5мм, т.е. размера взрослого человека. В возрасте 40--50 лет зрачок немного суживается.

Сетчатка прилежит к стекловидному телу и состоит из трех частей. Задняя часть получила название зрительной, в ней располагаются светочувствительные рецепторы глаза (фоторецепторы) -- колбочки и палочки. На уровне ресничного тела располагается вторая часть сетчатки -- зубчатая кайма. Передняя часть сетчатки подстилает радужку и называется радужиной. Последние две части нечувствительны к свету.

Зрительная часть сетчатки состоит из 10 слоев. Наружный пигментный слой прилегает к сосудистой оболочке. За ним располагается слой нейроэпителия с рецепторными клетками. В фоторецепторах различают наружный сегмент, содержащий светочувствительный зрительный пигмент (родопсин в палочках и йодопсин в колбочках), и внутренний сегмент, в котором находятся митохондрии. Периферические отростки палочек и колбочек погружены в черный пигментный слой, выстилающий внутреннюю поверхность глаза. Он уменьшает отражение света внутри глаза и участвует в обмене веществ рецепторов. В сетчатке насчитывают около 7 млн колбочек и примерно 130 млн палочек. Более чувствительны к свету палочки, их называют аппаратом сумеречного зрения. Колбочки, чувствительность которых к свету в 500 раз меньше, чем палочек, являются аппаратом дневного и цветового видения. Колбочки и палочки распределены в сетчатке неравномерно. На дне глаза, напротив зрачка, находится так называемое желтое пятно, в центре которого есть углубление -- центральная ямка -- место наилучшего видения. Сюда фокусируется изображение при рассматривании предмета. В центральной ямке имеются только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается, а число палочек возрастает. Периферия сетчатки содержит только палочки. Недалеко от пятна сетчатки, ближе к носу, расположено слепое пятно. Это место выхода зрительного нерва. В этом участке нет фоторецепторов, и слепое пятно не участвует в создании зрительного образа.

Фоторецепторы контактируют с биполярными нейронами, а те, в свою очередь, -- с ганглиозными клетками. Третий слой представляет собой наружную пограничную мембрану, образованную отростками клеток глии. Четвертый слой, наружный ядерный, образован внутренними сегментами рецепторов. Далее следует наружный сетчатый слой, состоящий из аксонов рецепторов и отростков биполярных и горизонтальных клеток. Шестой слой называется внутренним ядерным и содержит биполярные, горизонтальные и глиальные клетки. За ним лежит внутренний сетчатый слой из отростков биполярных и ганглиозных клеток. В восьмом (ганглиозном) слое находятся сами тела ганглиозных клеток. В девятом слое располагаются нервные волокна, являющиеся аксонами ганглиозных клеток и образующие зрительный нерв. Последним слоем является внутренняя пограничная мембрана, состоящая из отростков глиальных клеток. Отростки ганглиозных нейронов образуют зрительный нерв, являющийся проводниковым отделом зрительного анализатора.

Зрительный нерв у новорожденного тонкий (0,8 мм) и короткий. К 20 годам диаметр его увеличивается вдвое. По выходе из глаза зрительный нерв делится на две половины. Внутренняя перекрещивается и вместе с наружной половиной зрительного нерва противоположной стороны направляется к латеральному коленчатому телу, где расположен следующий нейрон, заканчивающийся на клетках зрительной зоны коры в затылочной доле полушария. Часть волокон зрительного тракта направляется к клеткам ядер верхнего двухолмия пластинки крыши среднего мозга. Эти ядра, так же как и ядра латеральных коленчатых тел, представляют собой первичные зрительные центры. От ядер верхнего двухолмия начинается тектоспинальный путь, за счет которого осуществляются рефлекторные ориентировочные рефлексы, связанные со зрением. Ядра верхнего двухолмия также имеют связи с парасимпатическим ядром глазодвигательного нерва, расположенным под дном водопровода мозга. От него начинаются волокна, входящие в состав глазодвигательного нерва, которые иннервируют сфинктер зрачка, обеспечивающий сужение зрачка при ярком свете (зрачковый рефлекс), и ресничную мышцу, осуществляющую аккомодацию глаза. Центральным отделом зрительного анализатора является затылочная доля коры полушарий переднего мозга.

Зрительный анализатор поставляет наибольшее количество информации в организм человека. Видимым светом называются волны длиной от 300 до 800 нм. Человек воспринимает волны длиной 400750 нм. Анализ зрительной информации начинается с фотохимических реакций в сетчатке и заканчивается в коре.

В палочках содержится пигмент родопсин (зрительный пурпур). Он представляет собой высокомолекулярное соединение, состоящее из ретиналя (альдегида витамина А) и белка опсина. При действии кванта света происходит фотохимическое превращение родопсина: ретиналь отщепляется от опсина и переходит в витамин А. При затемнении происходит обратный процесс. Родопсин по-разному чувствителен к лучам с различной длиной волны (больше всего к сине-зеленой части спектра). В колбочках находится пигмент йодопсин, структура которого близка к строению родопсина. Йодопсин поглощает в большей степени желтый свет.

Для возникновения зрительного ощущения источник света должен обладать энергией. Минимальное число квантов света, которое необходимо для возбуждения рецепторов глаза, колеблется от 8 до 47. Одна палочка может быть возбуждена 1 квантом света. Одиночные палочки и колбочки по световой чувствительности практически не различаются. Но число колбочек в центре в 100 раз меньше количества палочек в периферическом поле. Соответственно и чувствительность палочковой системы на два порядка выше колбочковой.

При переходе от темноты к свету наступает временное ослепление, но постепенно чувствительность глаза снижается (световая адаптация). При переходе от света к темноте происходит обратное явление: человек ничего не видит из-за пониженной возбудимости фоторецепторов. Постепенно их чувствительность повышается, и человек начинает видеть (темновая адаптация). Чувствительность к видению в темноте повышается неравномерно: в первые 10 минут -- в 50--80 раз, а в течение часа -- во много десятков тысяч раз. В это время происходит восстановление зрительных пигментов. Йодопсин колбочек в темноте восстанавливается быстрее родопсина, поэтому первая фаза адаптации связана с колбочками. Но этот период не вызывает больших изменений чувствительности, так как чувствительность колбочкового аппарата невелика. Следующий период связан с процессом восстановления родопсина, который происходит медленно и заканчивается к концу первого часа. Он сопровождается резким повышением чувствительности палочек к свету. Так как в темноте максимально чувствительны палочки, то слабоосвещенные предметы видны лишь в том случае, если они находятся не в центре поля зрения, а когда их изображения падают на периферию сетчатки. Кроме того, в темноте осуществляется пространственная суммация вследствие того, что к одной биполярной клетке подключается большое число фоторецепторов.

Для глаза характерна контрастная чувствительность, проявляющаяся во взаимном торможении нейронов. Например, серая полоска на светлом фоне кажется темнее такой же полоски бумаги, лежащей на темном фоне. Светлый тон возбуждает большую часть нейронов сетчатки, а они оказывают торможение на клетки, активируемые сигналами от рецепторов, на которые проецируется бумажная полоска. Поэтому бумажка на светлом фоне вызывает более слабое возбуждение и кажется темной. Наиболее сильное торможение обнаруживается между близко расположенными нейронами. Это так называемый локальный контраст, проявляющийся при восприятии двух поверхностей с разной освещенностью.

Слепящая яркость -- неприятное ощущение ослепления. Чем больше адаптирован глаз к темноте, тем ниже граница, которая ослепляет. Например, водителя машины ослепляют фары, при чтении нельзя использовать открытый источник света -- свет должен быть рассеянным.

Латентный период возникновения зрительного образа составляет 0,1 с. Но и исчезает ощущение не сразу после прекращения действия раздражителя: оно держится еще некоторое время (если в темноте водить угольком или свечкой, то наблюдается не точка, а сплошная линия). При вращении круга с черными и белыми секторами он кажется серым. Минимальная частота следования стимулов, при которой происходит слияние отдельных ощущений, называется критической частотой слияния (основа для кинематографии).

Ощущения, продолжающиеся после прекращения раздражения, называются последовательными образами (смотрим на лампу, закрываем глаза, еще некоторое время видим свет). Отрицательный последовательный образ -- если долго смотреть на предмет и перевести взгляд на светлый фон, то имеет место негативное изображение. Объясняется это следующим: когда мы смотрим на освещенный предмет, активируются определенные участки нейронов, а при переводе взгляда на равномерно освещенный экран отраженный свет оказывает более сильное возбуждение нате клетки, которые не были возбуждены.

В процессе формирования зрительного образа роль движений глаза очень велика и определяется тем, что для получения зрительной информации необходимо движение изображения на сетчатке. Импульсы в зрительном нерве возникают на включение и выключение светового изображения. При непрерывном воздействии света на зрительные рецепторы импульсация в нерве быстро прекращается и зрительное ощущение исчезает (если источник света укреплен на роговице и движется вместе с глазом, то через 12 с глаз перестает видеть свет). Таким образом, было обнаружено, что глаз при рассматривании предмета производит неощущаемые человеком непрерывные скачки. Вследствие этого изображение на сетчатке непрерывно смещается с одной точки на другую, раздражая все новые и новые фоторецепторы и вызывая вновь импульсацию в ганглиозных клетках. Продолжительность каждого скачка равна сотым долям секунды. Длительность интервалов между скачками 0,20,5 с. Это продолжительность фиксации взора на рассматриваемом предмете. Чем сложнее предмет, тем сложнее кривая движения глаза. Кроме скачков глаз непрерывно мелко

Слуховая сенсорная система, строение, развитие, возрастные особенности

Слуховой анализатор представляет собой совокупность механических, рецепторных и нервных структур, воспринимающих и анализирующих звуковые колебания. Периферический отдел слухового анализатора представлен слуховым органом, состоящим из наружного, среднего и внутреннего уха (рис. 58).

Наружное ухо состоит из ушной раковины и наружного слухового прохода.

Основу ушной раковины составляет эластичный хрящ, дополненный кожной складкой -- мочкой, заполненной жировой тканью. Ушная раковина у новорожденного уплощена, хрящ ее мягкий, кожа тонкая, мочка имеет небольшие размеры. Наиболее быстро ушная раковина растет в течение первых двух лет и после 10 лет. В длину она растет быстрее, чем в ширину. Свободный край раковины завернут внутрь в форме завитка, а с ее дна поднимается противозавиток. Медиальнее последнего располагается полость раковины, в глубине которой находится отверстие наружного слухового прохода. Спереди от него располагается козелок, сзади -- противокозелок.

Наружный слуховой проход имеет длину 24 мм и оканчивается барабанной перепонкой. Первая треть слухового прохода является хрящевым продолжением раковины, остальные две трети костные и располагаются в пирамиде височной кости. Наружный слуховой проход у новорожденного узкий и длинный (15 мм), круто изогнут, имеет сужение, медиальный и латеральный отделы его расширены. Стенки наружного слухового прохода хрящевые, за исключением барабанного кольца. Длина слухового прохода у ребенка 1 года составляет 20 мм, а 5 лет -- 22 мм. Слуховой проход выстлан кожей с тонкими волокнами и видоизмененными потовыми железками, выделяющими ушную серу. Все это защищает барабанную перепонку от неблагоприятных воздействий внешней среды. Барабанная перепонка отделяет наружное ухо от среднего. Она состоит из коллагеновых волокон, снаружи покрыта эпидермисом, а внутри -- слизистой оболочкой. Барабанная перепонка у новорожденного хорошо развита. Ее высота равна 9 мм, ширина -- 8 мм, как у взрослого человека, и образует угол в 3540°.

Среднее ухо состоит из барабанной полости, слуховых косточек и слуховой трубы. На передней стенке барабанной полости располагается отверстие слуховой трубы, через которое она заполняется воздухом. На задней стенке полости открываются ячейки сосцевидного отростка, а на медиальной размещаются окно преддверия и окно улитки, которые ведут во внутреннее ухо. Барабанная полость у новорожденного по размерам такая же, как у взрослого. Слизистая оболочка утолщена, и поэтому барабанная полость заполнена жидкостью. С началом дыхания она поступает через слуховую трубу в глотку и проглатывается. Стенки барабанной полости тонкие, особенно верхняя. Задняя стенка имеет широкое отверстие, ведущее в сосцевидную полость. Сосцевидные ячейки у грудных детей отсутствуют из-за слабого развития сосцевидного отростка. Окно улитки затянуто вторичной барабанной перепонкой.

В среднем ухе располагаются три слуховые косточки: молоточек, наковальня и стремя. Молоточек соединяется с одной стороны с барабанной перепонкой, а с другой -- с телом наковальни. Длинный отросток последней сочленяется с головкой стремени. Основание стремени прилегает к окну преддверия. Слуховые косточки у новорожденного имеют размеры, близкие к таковым у взрослого. Все три косточки соединяют барабанную перепонку с внутренним ухом.

Слуховая труба -- это длинный (3,5 см) и узкий (2 мм) хрящевой канал, который переходит в костный со стороны пирамиды. Труба служит для выравнивания давления воздуха на барабанную перепонку. Отверстие трубы в глотке находится в спавшемся состоянии и воздух в барабанную полость поступает лишь при глотании или зевании.

Слуховая труба у новорожденного прямая, широкая и короткая, длиной 17--18 мм. В течение первого года жизни она растет медленно (20 мм), на втором году быстрее (30 мм). В 5 лет длина ее составляет 35 мм, у взрослого человека -- 35--38 мм. Просвет слуховой трубы суживается от 2,5 мм в 6 месяцев до 2 мм в 2 года и 1 --2 мм в 6 лет.

Внутреннее ухо, или лабиринт, имеет двойные стенки: перепончатый лабиринт вставлен в костный. Между ними находится прозрачная жидкость -- перилимфа, а внутри перепончатого -- эндолимфа.

Костный лабиринт состоит из преддверия, улитки и трех полукружных каналов. Преддверие представляет собой овальную полость, соединяющуюся с барабанной полостью с помощью перегородки с двумя окнами: овальным (окно преддверия) и круглым (окно улитки). В преддверие открываются отверстия трех полукружных каналов и спиральный канал улитки. Строение полукружных каналов будет рассмотрено при описании вестибулярного анализатора. Костная улитка представляет собой спиральный канал, имеющий два с половиной оборота вокруг стержня улитки. От стержня отходит костная спиральная пластинка, не доходящая до наружной стенки канала. От свободного конца спиральной пластинки до противоположной стенки улитки натянуты две мембраны -- спиральная и вестибулярная, которые ограничивают улитковый проток. Улитковый проток делит улитку на две части, или лестницы. Верхняя часть, или лестница преддверия, начинается от овального окна преддверия и идет до вершины улитки, где через маленькое отверстие сообщается с нижним каналом, или барабанной лестницей. Она располагается от верхушки улитки до круглого окна улитки. Вестибулярная и барабанная лестницы заполнены перилимфой, а просвет улиткового протока -- эндолимфой. Внутреннее ухо у новорожденного развито хорошо, его размеры близки к таковым у взрослого человека. Костные стенки полукружных каналов тонкие, постепенно утолщаются за счет окостенения в пирамиде височной кости.

На спиральной мембране лежит спиральный орган, состоящий из опорных и рецепторных клеток. На опорных клетках цилиндрической формы лежат рецепторные волосковые клетки, которые имеют на своей верхней части выросты, представленные крупными микроворсинками (стереоцилиями). Волосковые клетки бывают наружными, располагающимися в три ряда, и внутренними, образующими только один ряд. Между наружными и внутренними волосковыми клетками лежит кортиев туннель, выстланный столбчатыми клетками.

Реснички наружных и внутренних волосковых клеток соприкасаются с покровной (текториальной) мембраной. Эта мембрана представляет собой однородную желеобразную массу, прикрепленную к клеткам эпителия. Спиральная мембрана неодинакова по ширине: у человека вблизи овального окна ее ширина составляет 0,04 мм, а затем по направлению к вершине улитки, постепенно расширяясь, она достигает в конце 0,5 мм. В базальной части спирального органа располагаются рецепторные клетки, воспринимающие более высокие частоты, а в апикальной части (на вершине улитки) -- клетки, воспринимающие только низкие частоты.

Базальные части рецепторных клеток контактируют с нервными волокнами, которые проходят в базальной мембране, а затем выходят в канал спиральной пластинки. Далее они идут к нейронам спирального ганглия, лежащего в костной улитке, где и начинается проводниковый отдел слухового анализатора. Аксоны нейронов спирального узла образуют волокна слухового нерва, который входит в мозг между нижними ножками мозжечка и мостом и направляется в покрышку моста, где имеет место первый перекрест волокон и образуется латеральная петля. Часть ее волокон оканчивается на клетках нижнего двухолмия, где находится первичный слуховой центр. Другие волокна латеральной петли в составе ручки нижнего двухолмия подходят к медиальному коленчатому телу. Отростки клеток последнего образуют слуховую лучистость, оканчивающуюся в коре верхней височной извилины (корковый отдел слухового анализатора).

Соматосенсорная система. Тактильная, температурная, болевая чувствительность, их значение для ребенка. Рецепторы мышц, сухожилий, суставов, их развитие в разные возрастные периоды.

Тело человека покрывает кожный покров (1,6 м2). Это рецепторная поверхность, обеспечивающая осязательную, температурную и болевую чувствительность. Благодаря наличию рогового (кератинового) слоя на поверхности эпителия кожа выполняет защитную функцию, препятствуя проникновению вредных веществ и микроорганизмов. Кожа защищает организм от излишнего испарения влаги, участвует в водносолевом обмене, дыхании и терморегуляции. Находящиеся в коже меланоциты вырабатывают пигмент, защищающий организм от вредного воздействия ультрафиолетовых лучей.


Подобные документы

  • Морфо-функциональные особенности коры надпочечников, главные продукты стероидогенеза, основные гормоны. Факторы, регулирующие секрецию ренина и альдостерона. Патологии коркового вещества надпочечников. Изменение метаболизма при гипо- и гиперсекреции.

    реферат [1,1 M], добавлен 27.12.2011

  • Системы межклетосной комуникации. Механизм действия гормонов. Гормоны гипофиза, гипоталамуса, регулирующие метаболизм кальция, коры и мозгового вещества надпочечников, поджелудочной железы, желудочно-кишечного тракта. Механизм действия катехоламинов.

    учебное пособие [34,8 K], добавлен 19.07.2009

  • Гипофиз как железа внутренней секреции. Взаимодействие гормонов с центральной нервной системой. Обзор структуры, функций основных гормонов гипофиза и возможных патологических состояний, связанных с их повышением. Специфическое действие соматотропина.

    реферат [29,5 K], добавлен 03.11.2017

  • Классификация гормонов в зависимости от места их природного синтеза. Гормоны гипоталамуса, гипофиза, щитовидной железы, надпочечников, поджелудочной железы, половых желез, зобной железы, их роль в происхождении многих заболеваний нервной системы, кожи.

    презентация [345,9 K], добавлен 14.04.2015

  • Регуляция жизнедеятельности организма с помощью центральной нервной системы. Гипоталамус как особый отдел промежуточного мозга. Действие гормонов гипофиза на железы внутренней секреции, водный баланс, на усиление и замедление роста тела человека.

    презентация [459,0 K], добавлен 11.11.2014

  • Характеристика симпатической и парасимпатической частей вегетативной нервной системы. Строение центрального (мозгового) и периферического (внемозгового) отделов. Нервы и сплетения различных органов. Развитие и возрастные особенности нервной системы.

    учебное пособие [10,5 M], добавлен 09.01.2012

  • Строение, функции и значение эндокринной системы. Общие анатомо-физиологические свойства желез внутренней и внешней секреции; нейрогуморальная регуляция. Классификация эндокринных органов. Влияние гормонов на обмен веществ, рост и развитие организма.

    презентация [6,1 M], добавлен 19.04.2015

  • Общий представление об гипофизе. Отделы и гормоны гипофиза. Заболевание, вызываемое гипофизом, его лечение. Гистологическое строение отделов и клеток гипофиза. Действие гормонов гипофиза на периферические эндокринные железы и их общее влияние на организм.

    презентация [4,0 M], добавлен 30.04.2015

  • Понятия гормоноподобные и биологически активные вещества, гормоны местного действия. Гормональные рецепторы, классификация и взаимодействие гормонов. Регуляция функций желез внутренней секреции. Регулирующее влияние ЦНС на деятельность эндокринных желез.

    лекция [12,5 M], добавлен 28.04.2012

  • Гормоны как биологически активные вещества, вырабатываемые эндокринными железами. Основные свойства и механизм действия гормонов. Главные эндокринные железы. Особенности мужских и женских гормонов. Функции паращитовидных желез в организме человека.

    презентация [774,8 K], добавлен 06.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.