Характеристика и медицинская помощь при отравлении веществами цитотоксического действия
Общая характеристика цитотоксического действия как поражающего действия веществ на организм, путем формирования глубоких и структурных изменений в клетках. Ингибиторы синтеза белка и клеточного деления. Первая помощь при отравлениях тиоловыми ядами.
Рубрика | Медицина |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 11.10.2011 |
Размер файла | 242,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Поражение глаз
Глаза очень чувствительны к люизиту. При действии паров люизита в момент контакта появляются чувство жжения, боль в области глаз, слезотечение.Легкая степень поражения органа зрения характеризуется симптомами катарального конъюнктивита (покраснение конъюнктивы, обильное слезотечение, светобоязнь). После прекращения действия токсиканта симптомы раздражения довольно быстро проходят.
При увеличении времени контакта или повышении концентрации паров ОВ наблюдается поражение средней степени тяжести: симптомы раздражения конъюнктивы более выражены, наблюдаются отек конъюнктивы и век, развивается стойкий блефароспазм. В конъюнктиве появляются мелкоточечные кровоизлияния, постепенно катаральный конъюнктивит переходит в гнойный. Процесс может затянуться на несколько недель.
Действуя в более высоких концентрациях, яд вызывает развитие поражения тяжелой формы, при которой в процесс вовлекаются не только веки, конъюнктива, но и роговая оболочка глаза. В этих случаях, помимо симптомов описанных выше, через 5-8 ч появляются признаки помутнения роговицы. Через 10-14 дней кератит проходит, а через 20-30 дней наступает выздоровление.
При попадании в глаза люизита в капельно-жидком виде быстро развиваются выраженный отек всех тканей глаза, резкая гиперемия конъюнктивы, появляются кровоизлияния. Затем формируются очаги некроза роговицы. Процессу некротизации, кроме роговицы, подвергаются слизистая оболочка, подслизистая, клетчатка и мышцы глаза (панофтальмит). Такое поражение заканчивается потерей глаза.
Поражение кожи
Действуя в капельно-жидком состоянии люизит быстро проникает в толщу кожи (в течение 3-5 мин). Скрытый период практически отсутствует. Сразу развивается явление раздражения: ощущаются боль, жжение на месте воздействия.
Затем проявляются воспалительные изменения кожи, выраженность которых определяет степень тяжести поражения. Поражения кожи протекают в форме воспалительно-некротических изменений разной степени выраженности. Легкое поражение характеризуется появлением болезненной эритемы. Поражение средней степени тяжести приводит к образованию в течение нескольких часов поверхностного пузыря. Последний быстро вскрывается.
Эрозивная поверхность эпителизируется в течение 1 - 2 недель. Тяжелое поражение - это глубокая, длительно незаживающая язва.
При поражении кожи парами люизита наблюдается скрытый период продолжительностью 4-6 ч, за которым следует период формирования разлитой эритемы прежде всего на открытых участках кожи. Действуя в высоких концентрациях вещество может вызвать развитие поверхностных пузырей.
Заживление наступает в среднем через 8-15 дней. При защите органов дыхания смертельное поражение парообразным люизитом практически не возможно.
Сравнительная характеристика поражения кожи люизитом и ипритом представлена в таблице:
Сравнительно характеристика поражения кожи ипритом и люизитом (в жидком состоянии)
Характер действия ОВ |
Люизит |
Иприт |
|
Растекание капель |
Значительное |
Более слабое |
|
Время всасывания |
5 мин |
20-30 мин |
|
Скрытый период |
Отсутствует |
4-6 ч |
|
Эритема |
Яркая, имеет четкие границы со здоровой кожей (появляется через 30 мин) |
Неяркая (цвет семги), не имеет четких границ со здоровой кожей |
|
Отек кожи |
Резко выражен |
Не выражен |
|
Пузыри |
Через 12-13 ч единичные, большие |
Через 24 ч, сначала мелкие в виде ожерелья |
|
Язва |
Дно ярко-красное с мелкоточечными кровоизлияниями, может захватывать кожу и подлежащие ткани, глубокая, чистая язва, без гнойного отделяемого. |
Дно язвы бледное, глубина язвы меньшая |
|
Максимум воспалительных изменений на месте поражения |
Через 48 ч |
Через 10-12 дней |
|
Продолжительность течения |
2-3 недели |
6-8 недель |
|
Пигментация вокруг поражения |
Отсутствует (имеется шелушение) |
Стойкая |
Местное поражение люизитом характеризуется обильной экссудацией, отеком тканей и сосудистыми явлениями (резкая гиперемия и кровоизлияния). При люизитном воздействии наблюдается более быстрый темп воспалительного процесса с быстрым его разрешением.
Поражение желудочно-кишечного тракта
Поражение желудочно-кишечного тракта развивается при попадании люизита внутрь с зараженной водой или продовольствием и проявляется признаками тяжелого геморрагического гастроэнтерита. Почти сразу после воздействия появляются слюнотечение, тошнота, обильная и упорная рвота (рвотные массы с запахом люизита и примесью крови), боли в животе, понос. В эксперименте, отравленные животные угнетены, отказываются принимать пищу, теряют в весе. Смерть может наступить в течение 2 - 3 суток после приема токсиканта. При введении в желудок очень большого количества люизита (несколько смертельных доз) летальный исход наблюдается в первые часы интоксикации. При вскрытии обнаруживаются воспалительно-некротические изменения слизистой оболочки, подслизистого слоя по ходу пищеварительного тракта, глубокие язвы, доходящие до мышечного слоя в пищеводе или даже серозной оболочки в желудке. При несмертельном отравлении выздоровление происходит медленно.
Функциональные нарушения деятельности желудочно-кишечного тракта в форме тошноты, рвоты, поноса наблюдаются также и при иных способах аппликации вещества (ингаляционном, накожном) и являются проявлениями резорбтивного действия яда.
Резорбтивное действие
При тяжелых поражениях люизитом, одновременно с местными проявлениями, независимо от места аппликации, развиваются симптомы, обусловленные резорбтивным действием яда. Отравленные экспериментальные животные вялы, отказываются от пищи, рефлексы ослаблены. Состояние угнетения отмечается на протяжении всего периода интоксикации. Перед смертью животные не реагируют на раздражители (корнеальный рефлекс сохраняется до наступления смерти).
Люизит, как и другие соединения трехвалентного мышьяка, является, прежде всего, сосудистым ядом. Наиболее характерно для люизитной интоксикации - прогрессирующее падение артериального давления, которое у экспериментальных животных, перед их гибелью может доходить до нулевых значений. Снижение давления крови наблюдается и в случае более легких поражений, заканчивающихся выздоровлением. При этом расстройства сердечной деятельности выражены сравнительно слабо и характеризуются учащением или замедлением частоты сердечных сокращений.
Люизит вызывает усиление проницаемости сосудов (артериол и капилляров). Под влиянием токсиканта происходит выход жидкой части крови в серозные полости и межклеточное пространство тканей. Развивается отек легких, гидроторакс, гидроперикард и т.д. В более тяжелых случаях нарушение проницаемость сосудов выражено столь значительно, что это приводит к кровоизлияниям во внутренние органы (легкие, почки, сердечную мышцу, под эндокард и т.д.), сначала точечным, а затем и обширным. Происходит сгущение крови, при котором возрастает ее вязкость. Смерть наступает на высоте сгущения крови.
Уже в ближайшие часы после воздействия в крови увеличивается количество эритроцитов, гемоглобина; через 4 - 6 часов эти изменения достигают максимума. В начальном периоде интоксикации развивается лейкоцитоз, который в тяжелых случаях перерастает в лейкопению. Развитие выраженной лейкопении, лимфо- и эозинопении рассматривается как плохой прогностический признак. Выраженность изменений со стороны системы крови зависит от дозы вещества, а также от интенсивности воспалительного процесса на месте его аппликации.
При затяжном течении отравления снижение массы тела, потеря аппетита и адинамия свидетельствуют о нарушении обмена веществ. Особенно страдает углеводный обмен (отмечается повышение содержания сахара, пировиноградной и молочной кислот в крови). В результате накопления кислых продуктов в крови наблюдается сдвиг кислотно-основного состояния. Развивается метаболический ацидоз. Признаком нарушения жирового обмена является гипохолестеринемия. В более позднем периоде интоксикации (3 - 10 сутки) на первый план выступают изменения белкового обмена (повышается содержание продуктов распада белка - общего азота, азота мочевины, в моче и т.д.). При вскрытии погибших животных выявляются дегенеративные изменения паренхиматозных органов (жировая дистрофия, некроз паренхимы, перерождение эпителия). Отчетливо выражены дистрофические изменения нервных клеток различных отделов ЦНС, солнечного сплетения и т.д. в виде вакуолизации, сморщивания, пикноза ядер, кариорексиса.
Таким образом, для резорбтивного действия люизита характерными являются сосудистые расстройства, а также дегенеративные изменения со стороны клеток нервной системы и паренхиматозных органов.
Патогенез
Люизит обладает избирательным алкилирующим действием. Блокирует дитиоловые группы биомолекул (аминных и нуклеиновых кислот, ферментов). Отсюда его название - «тиоловый яд». Основной точкой приложения люизита дитиоловые ферменты пируватдегидрогеназного комплекса митохондрий, вследствие чего развивается блокада важнейших звеньев углеводного и энергетического обменов через окислительное декарбоксилирование пирувата.
Механизм действия люизита (его местное и резорбтивное действие) и его клиническая картина отравления существенно отличается от механизма действия и клинической картины отравления ипритами. Радиомиметический синдром (общее алкилирующее действие) для люизитных поражений не характерен.
Лечение люизитных поражений
1. Меркаптопропанол - британский антилюизит БАЛ - выпускается в ампулах по 1 или 3 мл 10% масляного раствора, вводится в/м.
2. Димеркаптопропансульфонат натрия (Унитиол), выпускается в ампулах и в порошке. Ампулы содержат 5 мл 5% раствора, вводят п/к, в/м, в/в. Из порошка готовят 100-150 мл 5% раствора для промывания желудка. Для лечения глаз используют 10% мазь. Для местного лечения люизитных поражений кожи накладывают повязки с 30% унитиоловой мазью. Унитиол захватывает и выводит свободный и фиксированный в тканях мышьяк. Унитиол является комплексообразователем, поэтому способствует выведению токсических и радиоактивных веществ из организма.
3. Липоевая кислота - природный антидот мышьяк- и металлосодержащих ядов.
Относится к витаминам группы В. натриевые и этилендиаминовые соли хорошо растворяются в воде. Выпускается в ампулах и таблетках, содержащих повышенное количество дозы препарата, Содержимое ампулы растворяют в 250 мл 0,9% раствора натрия хлорида и вводят в течение 30 минут 1 раз в сутки.
При попадании люизита кожу, удалить ватным тампоном и обработать кожу раствором из ИПП растворами ДТ-1, аммиаком или перекисью водорода. Кроме этого смотри раздел «Меропрития медицинской защиты и средства медицинской защиты при отравлении соединениями мышьяка» и ипритом.
Дегазация
Для дегазации используются те же средства, что и при ипритном заражении: жидкость противохимических пакетов, вещества, содержащие окислители, хлорсодержащие жидкости. Применение окислителей для дегазации мышьяк содержащих соединений на покровных тканях основано на окислении трехвалентного мышьяка в пятивалентный.
2.1.3 Галогенированные ароматические арсины
Высокотоксичным представителем группы ароматических арсинов является фенилдихлорарсин. Это соединение также рассматривали как возможное ОВ кожно-нарывного действия.
Поскольку в структуру токсиканта входит арильный радикал вещество, помимо свойств, присущих всем галогенированным органически производным трехвалентного мышьяка (люизиту), обладает сильно выраженным раздражающим действием. Основные свойства вещества представлены в таблице:
Основные свойства фенилдихлорарсина
Молекулярный вес |
222,91 |
|
Плотность пара (по воздуху) |
7,7 |
|
Плотность жидкости |
1,65 (при 250С) |
|
Температура кипения |
252-2550С |
|
Скорость гидролиза |
Высокая |
|
Продукты гидролиза |
НСl и фениларсиноксид |
|
Стабильность при хранении |
Стабилен |
|
Запах |
Отсутствует |
|
Средняя концентрация органолептического определения (раздражение носоглотки) |
0,0009 г/м3 |
|
Среднесмертельная доза (ингаляционно) |
2,6 г мин/м3 |
|
Средненепереносимая доза (рвотное действие) |
0,016 г мин/м3 |
|
Средненепереносимая доза (кожно-нарывное действие) |
1,8 г мин/м3 |
|
Клинические эффекты |
Действие на кожу и глаза. (на глаза - немедленное; на кожу - отсрочено на 30 мин - 1 час) Резорбтивное действие (см. люизит) |
Механизм токсического действия соединений мышьяка
В 1925 году Фегтлиным было высказано предположение, что токсическое действие соединений трехвалентного мышьяка, сопровождающееся значительным нарушением функций и гибелью клеток различных органов и тканей, обусловлено их способностью к взаимодействию с сульфгидрильными группами биологических молекул. Предпосылкой к этому послужили данные о способности арсенитов взаимодействовать с сероводородом с образованием сульфидов мышьяка:
По мнению автора, основным объектом токсического воздействия в клетках является глутатион, сульфгидрильные группы которого в процессе реакции блокируются:
Было установлено, что предварительное введение глутатиона защищает лабораторных животных от арсеноксида и арсенита натрия, вводимых в смертельных дозах.
Теоретически отравление мышьяком может сопровождаться нарушением активности всех SH-содержащих молекул (см. выше). Однако в начале сороковых годов ХХ века Томпсоном и соавторами было показано, что реакции соединений мышьяка, и в частности люизита, с тиоловыми группами протекают двояко. При взаимодействии арсенитов с монотиолами образуются малопрочные, легко гидролизуемые соединения. При взаимодействии же токсикантов с молекулами, в которых две тиоловые группы расположены рядом (в положении 1,2, либо - 1,3) образуются прочные, не поддающиеся гидролизу циклические соединения:
Была высказана гипотеза (Питерс, Томпсон, Стокен), согласно которой токсическое действие различных соединений мышьяка обусловлено главным образом их реакцией с молекулами со смежным расположением SH-групп, в результате чего образуются прочные циклические структуры.
В частности, токсиканты активно связывается с липоевой кислотой, являющейся коэнзимом пируватоксидазного ферментного комплекса, регулирующего превращение пировиноградной кислоты (конечного продукта гликолиза) в активную форму уксусной кислоты (ацетил КоА), утилизируемую циклом Кребса. Происходит блокада цикла Кребса и энергообразования. В результате в крови и тканях накапливается пировиноградная кислота, пируват, развивется ацидоз. Блокируется цикл трикарбоновых кислот - нарушаются процессы энергетического обмена в клетках действия). различных органов (в этой связи люизит можно рассматривать и как вещество общеядовитого действия.
липоевая кислота
Взаимодействием мышьяк содержащих веществ с сульфгидрильными группами можно объяснить и их гипотензивное действие. Так, полагают, что рецепторные структуры для оксида азота, активного регулятора сосудистого тонуса, включают в качестве функционально-значимых элементов SH-группы. В основе расслабляющего действия NO на сосуды лежит его способность образовывать с SH-группами нестабильные нитрозотиолы (период полусуществования комплекса в организме - около 3 - 5 секунд):
Падение артериального давления, наблюдаемое при отравлении соединениями мышьяка, может быть объяснено образованием относительно стойких связей As с SH-группами сосудистых рецепторов оксида азота.
Широкое представительство в организме лигандов с высоким сродством к мышьяку и их большая роль в поддержании гомеостаза лежат в основе способности токсикантов действовать практически на все органы и системы, инициируя различные формы токсических процессов. Этим, в частности, можно объяснить развитие не только тяжелых воспалительно-некротических изменений в покровных тканях при непосредственном действии на них токсикантов, но и целый ряд функциональных нарушений со стороны ЦНС, печени, миокарда и т.д., наблюдаемых при отравлении соединениями мышьяка.
Способностью взаимодействовать с сульфгидрильными группами молекул и молекулярных комплексов, регулирующих процессы, лежащие в основе клеточного деления, можно объяснить и канцерогенное действие соединений мышьяка (по данным МАИР - мышьяк канцероген для человека).
Мероприятия медицинской защиты
Специальные санитарно-гигиенические мероприятия:
- использование индивидуальных технических средств защиты (средства защиты кожи; средства защиты органов дыхания) в зоне химического заражения;
- участие медицинской службы в проведении химической разведки в районе расположения войск, проведение экспертизы воды и продовольствия на зараженность ОВТВ;
- запрет на использование воды и продовольствия из непроверенных источников;
- обучение личного состава правилам поведения на зараженной местности.
Специальные профилактические медицинские мероприятия:
- проведение частичной санитарной обработки (использование ИПП) в зоне химического заражения;
- проведение санитарной обработки пораженных на передовых этапах медицинской эвакуации.
Специальные лечебные мероприятия:
- применение антидотов и средств патогенетической и симптоматической терапии состояний, угрожающих жизни, здоровью, дееспособности пораженного, в ходе оказания первой (само-взаимопомощь), доврачебной и первой врачебной (элементы) помощи пострадавшим.
- подготовка и проведение эвакуации
Медицинские средства защиты
Средства, применяемые при отравлениях мышьяк содержащими веществами, представлены препаратами трех групп:
1. Препараты для обезвреживания мышьяка, не всосавшегося во внутренние среды организма, на поверхности кожи, слизистой глаз, в просвете желудочно-кишечного тракта;
2. Лечебные антидоты;
3. Средства симптоматической и патогенетической помощи пострадавшим.
Средства для обезвреживания мышьяка на покровных тканях. При попадании капельно-жидкого ОВ на кожу или одежду в первые 5-10 мин производят частичную санитарную обработку с помощью содержимого индивидуального противохимического пакета. Помимо содержимого ИПП, для обезвреживания мышьяка на поверхности кожи могут быть использованы вещества, которые окисляют, хлорируют или приводят к гидролизу его соединения. Дегазирующие свойства окислителей основаны на превращении трехвалентного мышьяка, входящего в состав люизита, в пятивалентный, и снижении, в связи с этим, токсичности образующихся соединений. В качестве окислителей могут быть использованы растворы 5% монохлорамина, 5% марганцовокислого калия в 5% уксусной кислоте, 5-10% раствор йода, 40% гидропирита (перекис мочевины).
Для ослабления поражений кожи люизитом в виде мази применяют комплексообраователи из группы дитиолов: 3,5% или 5% мазь 2,3-димеркаптопропанола под названием “дикаптол” или 30% мазь унитиола.
При поражении глаз люизитом необходимо промыть глаз водой либо 0,25% раствором хлорамина и ввести в коньюнктивальный мешок на 1 - 2 минуты 30% мазь унитиола (затем глаз опять промыть).
При поражении слизистых оболочек дыхательных путей необходимо провести обмывание слизистой растворами 0,05% KMnO4, 0,25 - 1% хлорамина.
При попадании соединений мышьяка с зараженной водой или пищей необходимо обильно промыть желудок и пищевод раствором марганцовокислого калия (0,05% раствор). После этого следует назначить внутрь 5 мл 5% раствора унитиола.
Специфические противоядия соединений мышьяка
Как уже указывалось, Фегтлин и Розенталь еще в начале ХХ века установили защитную роль глутатиона против токсического действия арсеноксида и арсенита натрия. Позже было показано, что защитными свойствами обладают и другие соединения, содержащие одну сульфгидрильную группу (монотиолы): цистин, цистеин, ацетилцистеин, тиоэтиленгликоль, тиогликонат натрия, тиомалоновая кислота и т.д. Однако одновременно отмечалась малая активность монотиолов при лечении мышьяковых и особенно люизитных отравлений.
Работами Стокена и Томпсона было показано, что существенно повысить эффективность антидотной терапии можно, используя дитиольные соединения - вещества, образующие прочные циклические комплексы с мышьяком. Из препаратов такого типа весьма эффективным оказался 2,3-димеркаптопропанол, синтезированный в Великобритании в 1941 - 1942 гг и вошедший в медицинскую практику под названием “Британский антилюизит” (БАЛ). Под влиянием БАЛ скорость выведения мышьяка из организма отравленных с мочой увеличивается в 5 - 10 раз, особенно в первый день после воздействия токсиканта. По данным разработчиков терапевтический эффект БАЛ при отравлении люизитом и другими соединениями мышьяка обусловлен его способностью реагировать не только со свободными токсикантами, циркулирующими в крови (химический антагонизм), но и с мышьяком, который уже успел связаться с сульфгидрильными группами в тканях. Вследствие этого БАЛ не только предотвращает токсическое действие яда на биомолекулы, но и восстанавливает их физиологическую активность (биохимический антагонизм):
2,3-Димеркаптопропанол - бесцветная маслянистая жидкость с запахом меркаптана. В воде растворяется плохо (менее 6%), хорошо в органических растворителях. Для практических целей БАЛ рекомендуют применять внутримышечно в виде 5 - 10% раствора в масле из расчета 2 - 3 мг/кг.
Отдельные свойства 2,3-димеркаптопропанола понижают его ценность, как средства медицинской защиты. К таковым относятся: высокая токсичность (смертельная доза для крыс - около 200 мг/кг; непереносимая доза для человека, вызывающая тошноту, рвоту, головокружение и т.д. - около 5 мг/кг) и плохая растворимость в воде (и, следовательно, невозможность внутривенного способа введения). Это дало повод для поиска новых средств. В настоящее время в литературе имеется описание большого количества тиоловых соединений, испытанных в качестве антидотов мышьяка. Среди них дитиоэтиленгликоль, 2,3-димеркаптопропилэтиловый эфир, 2,3-димеркаптопропил-глюкозид, 2,3-димеркаптопропиламин, димеркаптосукцинат и т.д. Лишь некоторые из них нашли применение в клинической практике.
Структура некоторых комплексообразователей из групп ди- и монотиолов
В нашей стране профессором А.И. Черкесом и соавторами был разработан антидот - 2,3-димеркаптопропансульфонат натрия (унитиол), тоже относящийся к группе дитиолов, лишенный недостатков БАЛ. Это вещество хорошо растворимо в воде. Широта терапевтического действия - 1:20. Унитиол, так же как БАЛ, взаимодействует в крови и тканях отравленного и со свободным люизитом, и с ядом, уже связавшимся с молекулами-мишненями. Комплекс “люизит-унитиол”, называемый тиоарсенитом, малотоксичен, хорошо растворим в воде, и легко выводится из организма с мочой. Под влиянием унитиола у отравленных нормализуется состояние сердечно-сосудистой системы и системы крови: восстанавливается уровень кровяного давления, коллапс и сгущение крови, как правило, не развиваются. Отмечается нормализация биохимических показателей. Лечебная эффективность антидота в известной мере определяется сроками начала лечения. Наилучшие результаты наблюдались при введении вещества в течение первых 0,5 - 1 час после отравления мышьяком. Однако введение унитиола и через 4 - 6 часов после отравления обеспечивает выживание экспериментальных животных, отравленных абсолютно смертельными дозами яда.
Унитиол выпускается в ампулах по 5 мл 5% водного раствора. Поскольку, после введения, унитиол определяется в крови в течение лишь 5 часов, при отравлениях соединениями мышьяка, его вводят подкожно или внутримышечно по следующей схеме: в 1-е сутки - по 1 ампуле 4-6 раз с интервалом 4-6 ч; во 2-3-и сутки - по 1 ампуле 2-3 раза с интервалом 8-12 ч; в последующие 4-5-е сутки - по 1 ампуле в сутки.
К числу достаточно эффективных препаратов относят димеркаптосукцинат (ДМС). В эксперименте вещество оказалось весьма эффективным при острых интоксикациях As. Препарат является менее токсичными чем БАЛ.
Д-пенициламин (группа монотиолов) образует менее прочные комплексы с металлом, чем дитиолы, но в отличии от последних хорошо всасываются в желудочно-кишечном тракте и потому может быть назначен через рот.
Необходимо отметить, что применение специфических противоядий (дитиолов) при отравлениях соединениями мышьяка не всегда устраняет симптомы интоксикации. Достаточно резистентными оказываются нарушения со стороны ЦНС, обмена веществ при тяжелых формах отравления, а также в случае применения антидота в поздние периоды интоксикации. Поэтому при оказании медицинской помощи отравленным мышьяксодержащими веществами следует широко использовать и симптоматические средства терапии. Важнейшим направлением оказания помощи является борьба с развивающейся острой сердечно-сосудистой недостаточностью.
3. Токсичные модификаторы пластического обмена
К числу модификаторов пластического обмена принадлежат полигалогенированные ароматические углеводороды (ПАУ), среди которых наибольшей биологической активностью обладают диоксин и диоксиноподобные вещества. По степени токсичности ПАУ можно выстроить в следующий ряд: дибензо- пара диоксины-дибензофураны--- бифенилы-нафталены.
- диоксины (соединения, содержащие различное количество атомов галогена, два бензольных кольца, два атома кислорода, называются галогенированными диоксинами):
Диоксин
Например: 2,3,7,8 тетрахлордибензо парадиоксин; 2,3,6,7 тетрахлордибензо парадиоксин.
- дибензофураны (соединения, содержащие различное количество атомов галогена, два бензольных кольца, один атом кислорода, называются галогенированными бензофуранами):
Бензофуран
Например: 3,3,7,8 тетрахлор дибензофуран
- бифенилы (соединения, содержание различное количество атомов галогена, два бензольных кольца и не содержащие атома кислорода, называются галогенированными бифенилами):
Бифенил
Например: 3,3,4,4 тетрахлор бифенил; 2,3,6,7 тетрахлор бифенил 2,3,6,6 - тетрахлорнафтален
3.1 Диоксины и диоксиноподобные вещества
Являются продуктами горения, обладающими цитотоксическимдействием. Механизм образования диоксинов - высокотемпературные процессы хлорирования органических веществ, пиролитическая переработка и сжигание органических соединений.
Диоксины обладают наибольшей биологической активностью в классе полигалогенированных ароматических углеводородов. Являются экотоксикантами. Они обладают высокой токсичностью, наибольшей биологической активностью, стойкостью в окружающей среде, способностью к длительной материальной кумуляции в богатых липидами тканях и прежде всего в жировой, характерным своеобразием клинических проявлений интоксикации. Диоксины очень медленно выводятся из организма. Период полувыведения ТХДД из организма человека составляет в среднем - 7 лет. Особенностью токсикокинетики диоксинов является феномен энтерогепетической рециркуляции. После поступления в кровь диоксины распределяются во всех органах и тканях, накапливаясь, как уже было сказано, в жировой ткани. Характерна большя отсроченность токсических эффектов диоксина. Токсикологические характеристики диоксинов и диоксиноподобных соединений зависят от положения атомов хлора в молекуле. Особенно токсичны вещества, содержащие галогены в тех же местах, что и в молекуле 2,3,7,8 - тетрахлордибензо-парадиоксина ( ТХДД) - самого токсичного из диоксинов. Семейство диоксинов очень обширное, токсичность их различна, и человек, сталкиваясь с ними, подвергается воздействию их смесей. Токсичность смесей оценивается по особым системам, где каждому соединению присваивается коэффициент токсичности относительно 2,3,7,8- ТХДД, и общая токсичность смеси выражается в эквивалентном количестве этого соединения (так называемый «диоксиновый эквивалент»).
Основная опасность диоксинов заключается не столько в острой токсичности, сколько в кумуляции действия и отдаленных последствиях хронического отравления в малых дозах.
В настоящее время место лидера полихлорбифенильных соединений занял диоксин (2,3,6,7 - тетрахлордибензо пара- диоксин):
Это белое кристаллическое вещество, с температурой плавления 305,5 градусов С, температурой кипения 800 градусов С, хорошо растворяется в маслах, плохо в воде. Среди 10 млн синтезированных химических соединений диоксин - самое стойкое, его период полураспада - 10 лет. Среди 10 млн химических веществ диоксин - самое токсичное. Расчетная смертельная доза для человека при энтеральном введении равна 3,5 мкг/кг, при загрязнении через кожные покровы - 70 мкг/кг. Диоксин обладает сильнейшим эмбриотоксическим и тератогенным действием.
Патогенез
Механизм действия диоксина связан с наличием в его структуре четырех и может быть шести алкилирующих групп (четыре атома хлора и две эпоксидные группы в диоксановом кольце). Возможно «сшивание” молекулы нуклеотида в 4-6 точках. Диоксин во многом сходен с классическими алкилирующими агентами - сернистым и азотистым ипритами.
Диоксин - один из самых мощных индукторов микросомальных ферментов. А т. к. он долго присутствует в организме, наблюдается стойкая индукция микросомальных энзимов. С этим свойством связывают механизм его токсичесокого действия. Токсическое действие диоксина связано с длительной оккупацией цитозольного Аh-рецептора клеток органов -мишеней (печени, кожи и др.), что сопровождается образованием свободных радикалов, которые активируют перекисное окисление липидов в мембране клеток и субклеточных образований, приводящих к нарушению биохимических и физиологических процессов в различных клетках. Токсическому действию подвергаются: гепатоциты, энтероциты, нервные и эмбриональные клетки. Это обусловливает многообразный характер токсического действия диоксина: токсическое поражение печени, кожи, ЦНС, синдром истощения, угнетения иммунитета и развитие инфекционных осложнений, нарушение репродуктивной функции, тератогенное и канцерогенное действие. Действие диоксинов на человека обусловлено их влиянием на рецепторы клеток, ответственных за работу гормональной системы.
Клиника
Обычно развивается после латентного периода, длящегося 2-3 недели и очень медленно. Поэтому факт воздействия яда остается незамеченным. Необходимо организовывать тщательное наблюдение за состоянием здоровья людей. Тяжесть поражения делится на три степени.
1. Легкая степень отравления - головная боль, головокружение, тошнота, рвота, диарея, конъюнктивит, кашель. Наиболее характерный и специфический признак - развитие угревой сыпи (хлоракне). Морфологическая основа хлоракне - сквамозная метаплазия эпителия сальных желез и превращение их в кератин-содержащие цисты.
2. Средняя степень тяжести отравления - усиливаются проявления общей интоксикации, отмечаются токсические невриты и полиневриты. Появляются анорексия, боли в области печени, раздражительность, утомляемость, бессонница. Хлоракне распространяется шире и завершается образованием глубоких рубцов или червеобразной атрофодермией.
3. Тяжелая степень тяжести отравления - вначале преобладают симптомы общей интоксикации ( истощение, анорексия, общее угнетение, адинамия, лейкоцитоз). Позднее присоединяются симптомы органоспецифичесокй патологии: поражение печени, тканей иммунокомпетентных систем, проявления панцитопенического синдрома и др. Характерным признаком интоксикации являются отеки. Наблюдаются тяжелые формы поражения кожи. Развивается поздняя кожная порфирия, сопровождающаяся повышением чувствительности к солнечному излучению, ранимостью кожных покровов, эритематозными и буллезными высыпаниями на открытых участках тела (по типу фотодермита) и гиперпигментацией кожи. При исследовании крови отмечаются анемия и панцитопения. Летальный исход наступает через 2-4 недели.
При не смертельных острых поражениях токсический процесс растягивается на многие месяцы, а иногда и годы.
Л.А. Федоров систематизировал признаки поражения диоксином следующим образом:
- кожные эффекты: хлоракне, гиперкератоз, гиперпигментация, гирсутизм, эластоз;
- системные эффекты: фиброз печени, повышение активности трансаминазв сыворотке крови, гиперхолистеринемия, потеря аппетита, потеря массы тела, нарушения пищеварения, боли в мышцах, увеличение лимфатических узлов, нарушения со стороны ССС, выделительной системы, дыхательных путей, поджелудочной железы;
- неврологические эффекты: половая дисфункция, головная боль, неврастения, расстройства зрения, изменения вкуса, обоняния, слуха;
- эффекты в отношении психической сферы: расстройства сна, депрессия. Потеря активности, нехарактерные приступы гнева.
Таким образом, на основе клинических и экспериментальных данных можно систематизировать эффекты действия диоксина следующим образом: эмбриотоксические и тератогенные эффекты; имуннотоксические эффекты; патологические изменения эпителиальных и эктодермальных тканей (чешуйчатая метаплазия кератиноцитов, трансформация клеток сальных желез с формированием «хлоракне», гипоплазия и деформация ногтей, кариозный процесс в зубах; поражение эпителия желудочно-кишечного тракта); гепатотоксическое действие; геморрагические проявления; эндокринно-токсические эффекты, нейротропное действие, канцерогенная активность.
В настоящее время считается доказанным, что диоксины являются прямыми канцерогенами для человека. Диоксины и диоксиноподобные вещества относятся к веществам первой группы опасности из-за канцерогенности.
Профилактика и лечение:
Учитывая стойкость диоксинов в окружающей среде, необходимо иметь в виду, что проведение дегазационных мероприятий в зонах химического заражения очень затруднено. В подобных случаях проводят демонтаж и захоронение технологического оборудования. Всем членам аварийных бригад выдают 2 комплекта нательного белья с носками, трикотажные перчатки, брюки, противогазы с аэрозольным фильтром, пневмокостюмы (типа ЛГ), в которых предусмотрена подача чистого воздуха.
Лечение
Первая помощь
Надевание противогаза с аэрозольным фильтром или изолирующего противогаза. Удаление пострадавшего из зараженной атмосферы.
Доврачебная помощь
То же, что и выше, ингаляция кислорода. При попадании препаратов, содержащих диоксин на кожу, необходимо удалить их при помощи марлевого тампона, не втирая, а затем обработать участок кожи проточной водой в течение 15 минут.
Первая врачебная помощь
Проведение санитарной обработки со сменой белья, обуви и одежды, многократно промыть глаза и закапать в них несколько капель 2% раствора адреналина в новокаине. При попадании диоксина в желудок следует вызвать рвоту, немедленно промыть желудок большим (10-15 л) количеством воды, дать активированный уголь и затем солевое слабительное. Транспортировка на дальнейший этап оказания медицинской помощи в фиксированном боковом положении.
Квалифицированная и специализированная медицинская помощь
Лечение с помощью симптоматических и некоторых патогенетических средств с учетом ведущих симптомокомплексов в специализ ированных лечебных учреждениях.
Профилактика токсической гепатонефропатии: десенсибилизирующие средства, гормоны, интенсивная витаминотерапия (витамины группы В, аскорбиновая кислота, никотиновая кислота, фолиевая и липоевая кислоты, витамин А, эссенциале).
Всем членам аварийных бригад, участвующих в ликвидации последствий аварий с выбросом диоксина и диоксиноподобных соединений выдают 2 комплекта нательного хлопчатобумажного белья с носками, трикотажные перчатки, хлопчатобумажные куртки и брюки, костюмы из поливинилхлоридного пластика. Для защиты органов дыхания могут быть использованы любые противогазы с аэрозольным фильтром. Костюмы из пластиката рецептур «80/277» и «80/193» отличаются морозостойстью соответственно до -15 и -25 градусов Цельсия. Изделия из пластиката рецептуры «80 АМ» армированы капроновой сеткой. В пневмокостюмах типа ЛГ предусмотрена подача чистого воздуха. Эти костюмы можно дегазировать не снимая с работника. Комплект «КЗП-1» (куртка, брюки, плащ-халат) на основе пленочных материалов предназначен для защиты при температуре от -20 до 50 градусов Цельсия. Стирка хлопчатобумажных изделий осуществляется в мыльном растворе с применением поверхностно-активных веществ. Средства индивидуальной защиты из пластика по окончании рабочей смены подлежат очистке путем орошения и протирания 5% раствором пищевой соды, тщательному ополаскиванию проточной водой и высушивают.
3.2 Полихлорированные бифенилы (ПХБ)
Полихлорированные бифенилы (ПХБ) это класс синтетических хлорсодержащих полициклических соединений.
Структура одного из изомеров полихлорированных бифенилов
Хлор может замещать атомы водорода при любом атоме углерода. На рисунке представлена структура 3,5,3*,5*-тетрахлорбифенила. Теоретически возможно существование 209 изомеров вещества.
ПХБ при остром воздействии обладают сравнительно низкой токсичностью. Сравнительное изучение изомеров показывает, что хлорзамещенные в мета- и параположении более токсичны.
Средняя смертельная доза колеблется в интервале от 0,5 до 11,3 г/кг в зависимости от строения изомера и вида экспериментального животного.
ПХБ широко использовались при производстве электрооборудования, в частности трансформаторов и усилителей, а также в качестве наполнителей при производстве красителей и пестицидов, смазочных материалов для турбин, для производства гидравлических систем, текстиля, бумаги, флуоресцентных ламп, телевизионных приемников и др. Такое широкое использование ПХБ было обусловлено их невысокой термостойкостью, химической стабильностью, диэлектрическими свойствами, что позволяло применять вещества для производства изделий, в которых применение других охлаждающих агентов было сопряжено с высокой опасностью взрывов или воспламенения.
В 70-е годы в лабораторных и натурных исследованиях была установлена высокая опасность этих веществ, обусловленная способностью персистировать в окружающей среде и токсичностью для лабораторных животных. В 1979 году производство веществ в США было запрещено.
Токсикокинетика
В организм ПХБ могут проникать через кожу, легкие и желудочно-кишечный тракт. На производстве основной способ поступления веществ - через кожные покровы, в то время как в повседневной жизни большее количество веществ поступает в организм с контаминированной пищей.
Попав в кровь, вещества быстро накапливаются в печени и мышцах, откуда, затем, перераспредляются в жировую ткань. Коэффициент распределения веществ в мозге : печени : жире составляет в среднем - 1 : 3,5 : 81.
Среднее содержание ПХБ в сыворотке крови людей, проживающих в “чисты” регионах составляет примерно 7 частей на миллиард, у лиц, профессионально контактирующих с ПХБ - может достигать 3300.
ПХБ метаболизируют в основном в печени с образованием гидроксилированных фенольных соединений, через промежуточный продукт - ареноксид. Возможно дегалогенирование соединений. Скорость метаболизма зависит от структуры изомера и вида экспериментального животного, на котором изучается процесс. Собаки и грызуны метаболизируют ПХБ с большей скоростью, чем приматы. Основные пути выведения: с желчью в содержимое кишечника и через почки с мочой.
Как и диоксины ПХБ являются индукторами Р-450-зависимых оксидаз смешанной функции в печени, легких и тонком кишечнике. Их введение в организм сопровождается усилением метаболизма других ксенобиотиков. Индукторная способность различных изомеров ПХБ неодинакова.
Степень депонирования веществ в тканях зависит от строения изомеров, пути и продолжительности проникновения их в организм, а также от пола, возраста, привычек человека (прием алкоголя). Период полувыведения из организма колеблется от 6 - 7 до 33 - 34 месяцев.
Основные проявления острой интоксикации
Проявления интоксикации ПХБ чрезвычайно напоминают эффекты, развивающиеся при отравлении диоксинами.
В эксперименте на животных подострые и хронические воздействия приводят к развитию многообразных эффектов: прогрессивному падению веса, хлоракне, выпадению волос, отекам, инволюции тимуса и лимфоидной ткани, гепатомегалии, угнетению костного мозга, нарушению репродуктивных функций. У животных, подвергшихся воздействию ПХБ в пренатальном, неонатальном и постнатальном периоде, развиваются неврологические знаки, проявляющиеся, главным образом, нарушением поведения: склонностью к стереотипным “манежным” движениям, гипер- или гипоактивности. У взрослых животных нейротоксические свойства веществ не выявляются.
В действующих дозах вещества вызывают понижение веса иммунокомпетентных органов, включая селезенку, тимус, лимфатические узлы. Функциональное состояние иммунной системы не однозначно: при действии высоких доз ПХБ. отмечается иммуносупрессивное (снижением уровня антител, особенно IgA, IgM), а малых - активирующее (повышение уровня IgG) действие. Имеются данные об увеличении частоты инфекционных заболеваний среди животных, подвергшихся воздействию ПХБ. Получены многочисленные данные, свидетельствующие о мутагенном и канцерогенном действии ПХБ.
Токсический процесс, вызываемый ПХБ у человека изучен недостаточно. Наиболее достоверным эффектом является патология кожных покровов, и в частности, хлоракне (см. “Диоксин”). В некоторых исследованиях выявлена связь между действием ПХБ и развитием таких общих неблагоприятных эффектов, как частая головная боль, утомляемость, нервозность.
Механизм токсического действия полигалогенированных ароматических углеводородов
Токсическое действие полигалогенированных ароматических углеводородов в настоящее время во многом связывают с их чрезвычайно высокой активностью, как индукторов ферментов гладкого эндоплазматического ретикулума печени, почек, легких, кожи и других органов (микросомальных ферментов), участвующих в метаболизме чужеродных соединений и некоторых эндогенных веществ. 2,3,7,8-тетрахлордибензо-пара-диоксин (ТХДД) является самым сильным из известных индукторов, в частности, монооксигеназ. Его эффективная доза составляет 1 мкг/кг массы (в подавляющем большинстве случаев другие ксенобиотики проявляют свойства индукторов данной группы энзимов, действуя в значительно больших дозах - более 10 мг/кг).
Индукция активности предполагает синтез дополнительного количества того или иного энзима (белка) в органах и тканях de novo. Поскольку блокаторы синтеза ДНК (гидроксимочевина) не препятствуют индукции микросомальных энзимов диоксином и диоксиноподобными веществами, а ингибиторы синтеза РНК (актиномицин Д) и белка (пуромицин, циклогексимид) блокируют процесс, делатся вывод, что феномен индукции реализуется на уровне транскрипции генетической информации клетки.
В соответствие с существующими представлениями механизм действия ПАУ, и в частности ТХДД, состоит во взаимодействии вещества с цитозольными белками-регуляторами активности генов, отвечающих за синтез микросомальных ферментов. В норме, при поступлении ксенобиотиков в организм, а затем и в клетки (печени, почек и т.д.), они образуют в цитоплазме комплексы с белками-регуляторами, которые мигрирует в ядро клетки, где, взаимодействуя с ДНК, вызывают дерепрессию регуляторных генов и, тем самым, активирует синтез того или иного энзима. В случае ТХДД такой рецепторный цитоплазматический протеин-регулятор идентифицирован. В частности установлено, что синтез гидроксилазы ароматических улеводородов (aryl hydrocarbon hydroxylase) в гепатоцитах мышей, чувствительных к ароматическим углеводородам, регулируется локусом единственного доминантного гена (обозначается - Ah) и может быть усилен при проникновении в ядро клетки, образующегося в цитоплазме комплекса ТХДД с определенным протеином. Этот цитозольный белок-регулятор гена получил название Ah-рецепторный протеин.
Индукция, вызываемая полициклическими углеводородами не сопровождается выраженной пролиферацией гладкого эндоплазматического ретикулума, но существенно возрастает активность Р-450-зависимых монооксигеназ, УДФГ-трансферазы, гидроксиолаз и других энзимов.
Поскольку диоксин и диоксиноподобные вещества длительное время сохраняются в организме, наблюдается стойкая индукция микросомальных энзимов. При этом существенно изменяется не только скорость, но и характер биопревращений разнообразных чужеродных веществ, поступающих в организм (ксенобиотиков) и целого ряда эндогенных (прежде всего липофильных) биологически активных веществ, метаболизируемых при участии этой группы энзимов. В частности, существенно модифицируется метаболизм стероидов, порфиринов и каротиноидов, к числу которых относятся многие гормоны, витамины, коферменты и структурные элементы клеток.
Стойкая активация диоксином биопревращения некоторых ксенобиотиков, поступающих в организм с водой, продовольствием, вдыхаемым воздухом, может приводит к усиленному образованию реактивных промежуточных метаболитов и вторичному поражению ими различных органов и тканей. Модификация обмена стероидов (андрогенов, эстрогенов, анаболических стероидов, кортикосероидов, желчных кислот), порфиринов (простетические группы гемопротеинов, цитохромы, витамин В12 и т.д.), каротиноидов (витамины группы “А”), как известно, сопровождается выраженным нарушением обмена веществ. И тот и другой эффект, в сочетании, проявляются клинической картиной вялотекущего токсического процесса, описание которого дано выше.
Мероприятия медицинской защиты
Специальные санитарно-гигиенические мероприятия:
- использование индивидуальных технических средств защиты (средства защиты кожи; средства защиты органов дыхания) в зоне химического заражения;
- участие медицинской службы в проведении химической разведки в районе расположения войск, экспертиза воды и продовольствия на зараженность ОВТВ;
- запрет на использование воды и продовольствия из непроверенных источников;
- обучение личного состава правилам поведения на зараженной местности.
Специальные профилактические медицинские мероприятия:
- проведение санитарной обработки пораженных на передовых этапах медицинской эвакуации.
Специальные лечебные мероприятия:
- своевременное выявление пораженных;
- подготовка и проведение эвакуации
Медицинские средства защиты
Поскольку клиника острого поражения веществами развивается крайне замедленно факт воздействия веществами, как правило, остается незамеченным. Основная задача медицинской службы, в случае появления признаков поражения у отдельных военнослужащих, сводится к организации тщательного наблюдения за состоянием здоровья всего личного состава подразделения, выявлению пораженных с признаками заболевания, снижающими их военно-профессиональную работоспособность, и их своевременной госпитализации.
Специфические антагонисты (антидоты) токсического действия полигалогенированных ароматических углеводородов отсутствуют.
Размещено на Allbest.ru
Подобные документы
Ингибиторы синтеза белка и клеточного деления. Токсическое действие ипритов и рицина, помощь при отравлении. Мышьяксодержащие вещества: характеристика, применение, токсикокинетика и механизм воздействия. Токсичные модификаторы пластического обмена.
курсовая работа [288,7 K], добавлен 19.10.2011Классификация веществ цитотоксического действия. Физико-химические и токсические свойства ингибиторов синтеза белка и клеточного деления. Токсикологическая характеристика соединений мышьяка. Токсикология токсичных модификаторов пластического обмена.
курсовая работа [208,1 K], добавлен 20.02.2015Термические, электрические, химические и лучевые ожоги, площадь и глубина поражения тканей. Первая помощь при ожогах, прекращение действия поражающего фактора, обезболивание и лечение. Первая помощь при поражении электрическим током и химических ожогах.
реферат [64,0 K], добавлен 05.06.2010Физико-химические и токсические свойства ингибиторов синтеза белка и клеточного деления (ипритов). Клиника, профилактика и общие принципы оказания медицинской помощи пораженным ипритами. Токсикология токсичных модификаторов пластического обмена.
лекция [1,4 M], добавлен 08.10.2013Правовые основы оказания первой медицинской помощи. Условия и объем предоставляемой бесплатной и дополнительной медицинской помощи. Первая медицинская помощь при переломе верхнего конца бедра. Меры защиты от отравляющих веществ раздражающего действия.
контрольная работа [14,5 K], добавлен 16.06.2014Виды отравлений, классификация ядов и токсичных веществ. Экстренная медицинская помощь при острых отравлениях. Клиническая картина отравления и принципы оказания помощи больным при отравлении. Пищевые отравления от употребления загрязненных продуктов.
реферат [78,4 K], добавлен 09.03.2012Первая медицинская (доврачебная помощь) - срочные мероприятия при несчастных случаях, заболеваниях и отравлениях, правила ее оказания. Первая помощь при ранениях, ушибах, вывихах суставов и переломах, ожогах и обморожениях, поражении электрическим током.
реферат [25,8 K], добавлен 04.10.2012Характеристика неорганических цианидов, их применение. Пути проникновения производных синильной кислоты в организм. Клиническая картина и симптомы острой и хронической интоксикации. Экстренная медицинская помощь при отравлениях, лечение и профилактика.
презентация [657,8 K], добавлен 10.12.2014Простейшие срочные меры, необходимые для спасения жизни и здоровья пострадавшим при повреждениях, несчастных случаях и внезапных заболеваниях. Первая медицинская помощь при переломах, травмах, отравлении, ожогах. Признаки и симптомы обморожения.
презентация [1,7 M], добавлен 23.09.2014Общая токсикологическая характеристика отравляющих и сильнодействующих веществ удушающего действия. Механизм действия, патогенез интоксикации отравляющих веществ удушающего действия. Патогенез и неотложная помощь при поражении азотной кислотой и аммиаком.
реферат [27,3 K], добавлен 30.08.2011