статья  Авторегрессия мультирядов

Рассмотрение вопросов реализации авторегрессионных моделей для векторных временных рядов. Способ получения оценок параметров модели путем решения соответствующей вариационной задачи. Дифференцирование произвольной функции по векторным аргументам.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

  ___    ___   ___   ____   __ 
 / _ \  / _ \ |__ \ |___ \ /_ |
| (_) || (_) |   ) |  __) | | |
 > _ <  > _ <   / /  |__ <  | |
| (_) || (_) | / /_  ___) | | |
 \___/  \___/ |____||____/  |_|
                               
                               

Введите число, изображенное выше:

Рубрика Математика
Вид статья
Язык русский
Дата добавления 23.06.2018
Размер файла 51,6 K

Подобные документы

  • Ознакомление с математическим аппаратом анализа временных рядов и моделями авторегрессии. Составление простейших моделей авторегрессии стационарных временных рядов. Оценка дисперсии и автоковариации, построение графика автокорреляционной функции.

    лабораторная работа [58,7 K], добавлен 14.03.2014

  • Построение многофакторной корреляционно-регрессионной модели доходности предприятия: оценка параметров функции регрессии, анализ факторов на управляемость, экономическая интерпретация модели. Прогнозирование доходности на основе временных рядов.

    дипломная работа [5,1 M], добавлен 28.06.2011

  • Обзор таблицы производных элементарных функций. Понятие промежуточного аргумента. Правила дифференцирования сложных функций. Способ изображения траектории точки в виде изменения ее проекций по осям. Дифференцирование параметрически заданной функции.

    контрольная работа [238,1 K], добавлен 11.08.2009

  • Рассмотрение основ векторных полей, физического смысла дивергенции и ротора. Ознакомление с криволинейными и поверхностными интегралами и методами их вычисления. Изучение основных положений теорем Гаусса-Остроградского и Стокса; примеры решения задач.

    реферат [1,5 M], добавлен 24.03.2014

  • Изучение изменений анализируемых показателей во времени как важнейшая задача статистики. Понятие рядов динамики (временных рядов). Числовые значения того или иного статистического показателя, составляющего ряд динамики. Классификация рядов динамики.

    презентация [255,0 K], добавлен 28.11.2013

  • Нормированное пространство – одно из основных понятий функционального анализа, дифференцирование. Формула конечных приращений; связь между слабой и сильной дифференцируемостью. Абстрактные функции; интеграл; производные и дифференциалы высших порядков.

    курсовая работа [125,9 K], добавлен 24.01.2011

  • Методы численного дифференцирования. Вычисление производной, простейшими формулами. Численное дифференцирование, основанное на интерполяции алгебраическими многочленами. Аппроксимация многочленом Лагранжа. Дифференцирование, с использованием интерполяции.

    курсовая работа [1,3 M], добавлен 15.02.2016

  • Геометрический смысл производной. Анализ связи между непрерывностью и дифференцируемостью функции. Производные основных элементарных функций. Правила дифференцирования. Нахождение производной неявно заданной функции. Логарифмическое дифференцирование.

    презентация [282,0 K], добавлен 14.11.2014

  • Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.

    курсовая работа [810,5 K], добавлен 24.11.2013

  • Особенности выполнения задачи минимизации функционала. Свойства билинейной формы. Формулирование обобщенного способа решения вариационной задачи для краевых задач с самосопряженным дифференциальным оператором (вследствие квадратичности функционала).

    презентация [79,5 K], добавлен 30.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.