презентация  Рекуррентные и нерекуррентные формулы

Понятие рекуррентной нерекуррентной формул. Некоторые свойства чисел последовательности Фибоначчи. Система счисления, основанная на числах Фибоначчи. Схема прибавления, принцип перехода к следующей последовательности. Числа Каталана, элементы массива.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

 .d8888b.   .d8888b.   .d8888b.   .d8888b.   .d8888b.  
d88P  Y88b d88P  Y88b d88P  Y88b d88P  Y88b d88P  Y88b 
888    888 Y88b. d88P 888    888 Y88b. d88P 888    888 
888    888  "Y88888"  Y88b. d888  "Y88888"  888    888 
888    888 .d8P""Y8b.  "Y888P888 .d8P""Y8b. 888    888 
888    888 888    888        888 888    888 888    888 
Y88b  d88P Y88b  d88P Y88b  d88P Y88b  d88P Y88b  d88P 
 "Y8888P"   "Y8888P"   "Y8888P"   "Y8888P"   "Y8888P"  
                                                       
                                                       
                                                       

Введите число, изображенное выше:

Рубрика Математика
Вид презентация
Язык русский
Дата добавления 26.09.2017
Размер файла 625,7 K

Подобные документы

  • Классическая последовательность чисел Фибоначчи, определение основных понятий, схематическое изображение этой последовательности, ее свойства. Упорядочивание, вычисление элементов последовательности. Некоторые зависимости между мнимыми тройками.

    реферат [82,2 K], добавлен 07.09.2009

  • Фибоначчи Леонардо Пизанский — первый крупный математик средневековой Европы. Ряд чисел Фибоначчи - элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Примеры ряда Фибоначчи в повседневной жизни.

    доклад [25,5 K], добавлен 24.03.2012

  • Рассмотрение некоторых числовых последовательностей, заданных рекуррентно, их свойств и задач с ними связанных. Теория возвратных последовательностей. Свойства последовательности Фибоначчи и ее золотое сечение. Исследование последовательности Каталана.

    реферат [812,1 K], добавлен 03.05.2015

  • Изучение последовательности чисел Фибоначчи. Вклад в математику Леонардо Пизанского. Золотое сечение в жизни и в природе, ее геометрическое изображение. Построение точки, делящей отрезок единичной длины. Золотой прямоугольник и спираль Фибоначчи.

    презентация [421,5 K], добавлен 15.06.2017

  • Математическое описание последовательности чисел Фибоначчи. Представление фрагмента корзины "Гармония Мироздания" как образца формирования числовых рядов. Особенности построения живой спирали "Китовраса", ее практическое применение в древнем мире.

    доклад [6,4 M], добавлен 16.01.2011

  • Спиральная последовательность квадратов чисел. Последовательность чисел Фибоначчи и "золотое сечение" Леонардо да Винчи. Живые и неживые числа. Общая корзина "Гармонии Мироздания". Показательная спираль живой органики или спираль "Китовраса".

    статья [4,1 M], добавлен 18.04.2012

  • Жизнь и деятельность известного итальянского математика позднего Средневековья Леонардо из Пизы, известного как Фибоначчи. Последовательность цифр, именуемая рядом Фибоначчи, ее свойства. Коэффициент пропорциональности, называемый золотым сечением.

    презентация [159,5 K], добавлен 29.11.2011

  • Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа [46,8 K], добавлен 29.04.2017

  • Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.

    курсовая работа [416,0 K], добавлен 09.08.2015

  • Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.

    реферат [75,2 K], добавлен 09.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.