статья Анализ публикационной активности представителя Тульской теоретико-числовой научной школы
Исследование и характеристика процесса становления теоретико-числового метода в приближенном анализе, как раздела теории чисел. Ознакомление с деятельностью Добровольского - представителя Тульской теоретико-числовой школы. Определение индекса Хирша.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 22.01.2017 |
Размер файла | 102,5 K |
Подобные документы
Члены последовательности и их изображение на числовой оси. Виды последовательностей (ограниченная, возрастающая, убывающая, сходящаяся, расходящаяся), их практические примеры. Определение и геометрический смысл предела числовой последовательности.
презентация [78,9 K], добавлен 21.09.2013Числовой ряд - бесконечная последовательность чисел, соединенных знаком сложения. Сумма n первых членов ряда. Функция натурального аргумента. Свойства сходящихся и расходящихся рядов. Понятие и формула расчета n-ного остатка. Поиск суммы исходного ряда.
презентация [123,7 K], добавлен 18.09.2013Использование теоретико-числового и алгебраического метода доказательства, с наглядной геометрической верификацией, который был изобретен П. Ферма. Верификация метода бесконечных (неопределенных) спусков, который применяется для доказательства теоремы.
научная работа [796,8 K], добавлен 11.01.2008История развития теории пределов. Сущность и виды числовой последовательности, методика вычисления и определение свойств ее предела. Доказательство теоремы Штольца. Практическое применение предела последовательности в экономике, геометрии и физике.
курсовая работа [407,2 K], добавлен 16.12.2013Первое упоминание и использование числового ряда, его понятие и структура, этапы и направления дальнейшего исследования. Задачи, приводящие к понятию числового ряда и те, в которых он использовался. Признак Даламбера и Коши, Маклорена и сравнения.
курсовая работа [114,2 K], добавлен 01.10.2014Предел числовой последовательности. Сравнение бесконечно малых величин. Второй замечательный предел. Теорема Коши о сходимости числовой последовательности. Использование бинома Ньютона. Замена сомножителей на эквивалентные им более простые величины.
контрольная работа [152,1 K], добавлен 11.08.2009Определение числового ряда, его основные свойства. Ряды геометрической прогрессии. Исследование на сходимость гармонического ряда. Ряды с положительными членами. Признаки сходимости. Знакочередующиеся и знакопеременные ряды. Признак сходимости Лейбница.
лекция [137,2 K], добавлен 27.05.2010Понятие числовой прямой. Типы числовых промежутков. Определение координатами положения точки на прямой, на плоскости, в пространстве, система координат. Единицы измерения для осей. Определение расстояния между двумя точками плоскости и в пространстве.
реферат [123,9 K], добавлен 19.01.2012Понятие и история формирования категории "последовательность", ее значение в современной математике. Свойства и аналитическое задание последовательности, роль в развитии других областей знания. Решение задач на вычисление пределов последовательностей.
презентация [665,0 K], добавлен 17.03.2017Фибоначчи Леонардо Пизанский — первый крупный математик средневековой Европы. Ряд чисел Фибоначчи - элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Примеры ряда Фибоначчи в повседневной жизни.
доклад [25,5 K], добавлен 24.03.2012