статья  Методика исследования элементарных функций на монотонность и выпуклость графика методом обобщения

Решение проблемы исследования элементарных функций на монотонность и выпуклость графика без использования производной. Реализация и возможности применения метода обобщения при нахождении промежутков монотонности рациональных и алгебраических функций.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

                                                            
 ad888888b,   ad88888ba    ad888888b,   ad888888b,      88  
d8"     "88  d8"     "88  d8"     "88  d8"     "88    ,d88  
        a8P  8P       88          a8P          a8P  888888  
     ,d8P"   Y8,    ,d88       ,d8P"        aad8"       88  
   a8P"       "PPPPPP"88     a8P"           ""Y8,       88  
 a8P'                 8P   a8P'                "8b      88  
d8"          8b,    a8P   d8"          Y8,     a88      88  
88888888888  `"Y8888P'    88888888888   "Y888888P'      88  
                                                            
                                                            

Введите число, изображенное выше:

Рубрика Математика
Вид статья
Язык русский
Дата добавления 07.12.2016
Размер файла 1,1 M

Подобные документы

  • Общий обзор свойств функций, осмысление каждого свойства. Исследование функции на монотонность, ее наибольшее и наименьшее значения. Тестовое задание "Выпуклость функции". Примеры непрерывной функции D(f)=[-4; 6] и прерывной функции D(f)=(1; 7).

    презентация [360,5 K], добавлен 13.01.2015

  • Исследование функции на четность и периодичность. Нахождение вертикальных, горизонтальных (или наклонных) асимптот, а также экстремумов и интервалов монотонности. Определение интервалов выпуклости и точки перегиба. Построение графика исследуемой функции.

    презентация [134,7 K], добавлен 21.09.2013

  • Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.

    курс лекций [445,7 K], добавлен 27.05.2010

  • Общие сведения об элементарных функциях. Схема исследования функции и построения ее графика. Линейная, степенная, показательная, логарифмическая и тригонометрические функции. Простейшие преобразования графиков: параллельный перенос, деформация, отражение.

    курсовая работа [910,5 K], добавлен 16.10.2011

  • Вычисление производной функции и ее критических точек. Определение знака производной на каждом из интервалов методом частных значений. Нахождение промежутков монотонности и экстремумов функции. Разложение подынтегральной функции на простейшие дроби.

    контрольная работа [134,7 K], добавлен 09.04.2015

  • Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.

    лабораторная работа [253,6 K], добавлен 05.01.2015

  • Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.

    презентация [332,2 K], добавлен 21.09.2013

  • Система линейных неравенств, определяющих треугольник. Доказательство базиса четырехмерного пространства и определение координат вектора. Исследование функций на периодичность, монотонность и экстремум. Площади фигуры, ограниченной графиками функций.

    контрольная работа [174,5 K], добавлен 26.01.2010

  • Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.

    статья [122,0 K], добавлен 11.01.2004

  • Теоремы, позволяющие связать значение первой производной данной функции с характером ее монотонности. Понятие экстремума функции и его значение в исследовании поведения. Интервалы выпуклости и вогнутости функции, определение ее асимптот и схема изучения.

    реферат [255,0 K], добавлен 12.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.