статья Свойства среднеквадратической ошибки прогноза ридж-регрессии для идентификации модели сложного объекта управления при мультиколлинеарности факторов
Исследование функции среднеквадратической ошибки прогноза для ридж-регрессии на экстремум в зависимости от параметра регуляризации. Использование локального минимума СКОП для поиска оптимального параметра управления при мультиколлинеарности факторов.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 29.08.2016 |
Размер файла | 158,2 K |
Подобные документы
Построение уравнения регрессии. Оценка параметров линейной парной регрессии. F-критерий Фишера и t-критерий Стьюдента. Точечный и интервальный прогноз по уравнению линейной регрессии. Расчет и оценка ошибки прогноза и его доверительного интервала.
презентация [387,8 K], добавлен 25.05.2015Значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а). Определение стандартной ошибки предсказания являющейся мерой качества зависимости величин Y и х с помощью уравнения линейной регрессии. Значимость коэффициента регрессии.
задача [133,0 K], добавлен 21.12.2008Построение модели множественной регрессии теоретических значений динамики ВВП, определение средней ошибки аппроксимации. Выбор фактора, оказывающего большее влияние. Построение парных моделей регрессии. Определение лучшей модели. Проверка предпосылок МНК.
курсовая работа [352,9 K], добавлен 26.01.2010Методика и основные этапы расчета параметров линейного уравнения парной регрессии с помощью программы Excel. Анализ качества построенной модели, с использованием коэффициента парной корреляции, коэффициента детерминации и средней ошибки аппроксимации.
лабораторная работа [22,3 K], добавлен 15.04.2014Класс функций, представимых в виде собственного либо несобственного интеграла, зависящего не только от формальной переменной, а и от параметра. Эти функции называются интегралами зависящими от параметра. К ним относятся гамма и бета функции Эйлера.
курсовая работа [851,0 K], добавлен 03.07.2008Построение теоретико-вероятностной модели исследуемого явления случайной величины математическими выводами. Реализация выборки статистической моделью, описывающей серию опытов. Точечная (выборочная) оценка неизвестного параметра и кривая регрессии.
курсовая работа [311,7 K], добавлен 10.04.2011Методы составления закона распределения случайной величины. Вычисление средней арифметической и дисперсии распределения. Расчет средней квадратической ошибки бесповторной выборки. Построение эмпирических линий регрессии, поиск уравнения прямых регрессий.
контрольная работа [77,6 K], добавлен 20.07.2010Несобственные интегралы первого рода. Понятие абсолютно и условно сходящегося интеграла. Несобственные интегралы второго рода. Определение непрерывности функции и равномерной сходимости. Свойства несобственных интегралов, зависящих от параметра.
курсовая работа [240,1 K], добавлен 23.03.2011Построение многофакторной корреляционно-регрессионной модели доходности предприятия: оценка параметров функции регрессии, анализ факторов на управляемость, экономическая интерпретация модели. Прогнозирование доходности на основе временных рядов.
дипломная работа [5,1 M], добавлен 28.06.2011Планирование эксперимента и факторы параметра оптимизации. Математическая модель и матрица планирования, коэффициенты уравнения регрессии и абсолютная величина доверительного интервала. Имитационный эксперимент и дифференциальные уравнения колебаний.
курс лекций [240,8 K], добавлен 22.09.2011