контрольная работа Дифференциальное исчисление функции одного переменного
Применение правила Лопиталя, пример нахождения асимптоты функции. Понятие точки глобального экстремума, формула её расчета. Вычисление локального экстремума и построение эскиза графика функции, её исследование на монотонность. Дифференциальное исчисление.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
| Рубрика | Математика |
| Вид | контрольная работа |
| Язык | русский |
| Дата добавления | 16.05.2014 |
| Размер файла | 174,2 K |
Подобные документы
Введение в анализ и дифференциальное исчисление функции одного переменного. Нахождение локальных экстремумов функции. Интегральное исчисление функции, пределы интегрирования. Практический пример определения площади плоской фигуры, ограниченной кривыми.
контрольная работа [950,4 K], добавлен 20.01.2014Основные определения и теоремы производной, дифференциала функции; техника дифференцирования. Применение производных к вычислению пределов. Исследование функции на монотонность и точки локального экстремума. Полное исследование функции, асимптоты графика.
контрольная работа [539,8 K], добавлен 20.03.2016Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.
курс лекций [445,7 K], добавлен 27.05.2010Нахождение асимптот функции, локальных и глобальных экстремумов. Промежутки выпуклости и точки перегиба функции. Область определения функции и точки пересечения с осями. Нахождение определенного и неопределенного интегралов. Выполнение деления с остатком.
контрольная работа [312,9 K], добавлен 26.02.2012Производные функций, заданных в явном и неявном виде. Исследование функций методами дифференциального исчисления. Точки перегиба и экстремума, градиент функции. Объем тела, образованного вращением фигуры и ограниченной графиками функций, вокруг оси.
контрольная работа [77,3 K], добавлен 11.07.2013Исследование функции, построение ее графика, используя дифференциальное исчисление. Вычисление неопределенных интегралов, используя методы интегрирования. Пределы функции. Определение области сходимости степенного ряда. Решение дифференциальных уравнений.
контрольная работа [592,7 K], добавлен 06.09.2015Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.
задача [484,3 K], добавлен 02.10.2009Задачи оптимального управления и ее разновидности. Вычислительные аспекты динамического программирования. Дифференциальное и интегральное исчисление в образах: функции, последовательности, ряды. Транспортная задача, модель-Леонтьева, задачи на повторение.
курсовая работа [1,5 M], добавлен 20.06.2012Область определения функции. Очки пересечения с осями координат, промежутки знакопостоянства. Исследование функции на непрерывность. Асимптоты, определение точки экстремума и точки перегиба. Расчет области определения функций, заданных аналитически.
контрольная работа [178,7 K], добавлен 14.06.2013Область определения и свойства функции (четность, нечетность, периодичность). Точки пересечения функции с осями координат. Непрерывность функции. Характер точек разрыва. Асимптоты. Экстремумы функции. Исследование функции на монотонность. Точки перегиба.
презентация [298,3 K], добавлен 11.09.2011


