курс лекций  Алгебра и геометрия

Операции над множествами и их свойства. Система комплексных чисел. Многочлены с действительными коэффициентами и алгоритм Эвклида. Решение систем линейных уравнений матричным способом. Свойства аффинной и прямоугольной декартовой системы координат.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

 _____   ____  _____  _____  __  
|  _  | / ___||  _  ||  _  |/  | 
| | | |/ /___ | |_| || |_| |`| | 
| | | || ___ \\____ |\____ | | | 
\ |_| /| \_/ |.___/ /.___/ /_| |_
 \___/ \_____/\____/ \____/ \___/
                                 
                                 

Введите число, изображенное выше:

Рубрика Математика
Вид курс лекций
Язык русский
Дата добавления 17.01.2014
Размер файла 4,7 M

Подобные документы

  • Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.

    контрольная работа [63,2 K], добавлен 24.10.2010

  • Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.

    реферат [66,4 K], добавлен 14.08.2009

  • Понятие и назначение определителей, их общая характеристика, методика вычисления и свойства. Алгебра матриц. Системы линейных уравнений и их решение. Векторная алгебра, ее закономерности и принципы. Свойства и приложения векторного произведения.

    контрольная работа [996,2 K], добавлен 04.01.2012

  • Проверка совместности системы уравнений, ее решение матричным методом. Координаты вектора в четырехмерном пространстве. Решение линейных неравенств, определяющих внутреннюю область треугольника. Определение пределов, производных; исследование функции.

    контрольная работа [567,1 K], добавлен 21.05.2013

  • Квадратные матрицы и определители. Координатное линейное пространство. Исследование системы линейных уравнений. Алгебра матриц: их сложение и умножение. Геометрическое изображение комплексных чисел и их тригонометрическая форма. Теорема Лапласа и базис.

    учебное пособие [384,5 K], добавлен 02.03.2009

  • Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.

    курсовая работа [220,0 K], добавлен 21.10.2011

  • Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.

    курсовая работа [104,1 K], добавлен 03.01.2008

  • Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.

    учебное пособие [312,2 K], добавлен 09.03.2009

  • Комплексные числа и комплексные равенства, их алгебраическая и тригонометрическая формы. Арифметические действия над комплексными числами. Целые функции (многочлены) и их свойства. Решение алгебраических уравнений на множестве комплексных чисел.

    лекция [464,6 K], добавлен 12.06.2011

  • Решение задач систем линейных алгебраических уравнений, матричных уравнений, методы Гаусса и Кремера. Нахождение длины и координат вектора и исчисление его скалярного произведения. Уравнение прямой и определение координат точек неравенства; пределы.

    контрольная работа [220,9 K], добавлен 06.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.