контрольная работа Сетевые задачи: общая характеристика
Определение кратчайшего пути между вершинами сети как классический пример сетевых задач. Характеристика ориентированного и неориентированного графа. Методы генерации исходного допустимого потока. Метод Минти для решения задачи о кратчайшем пути в сети.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 24.01.2011 |
Размер файла | 222,7 K |
Подобные документы
Алгоритм перехода к графическому представлению для неориентированного графа. Количество вершин неориентированного графа. Чтение из матрицы смежностей. Связи между вершинами в матрице. Задание координат вершин в зависимости от количества секторов.
лабораторная работа [34,0 K], добавлен 29.04.2011Способы решения задач дискретной математики. Расчет кратчайшего пути между парами всех вершин в ориентированном и неориентированном графах с помощью использования алгоритма Флойда. Анализ задачи и методов ее решения. Разработка и характеристика программы.
курсовая работа [951,4 K], добавлен 22.01.2014Задача о кенигсбергских мостах, четырех красках, выходе из лабиринта. Матрица инцидентности для неориентированного и (ориентированного) графа. Степень вершины графа. Ориентированное дерево. Линейные диаграммы или графики Ганта. Метод критического пути.
презентация [258,0 K], добавлен 23.06.2013Граф как совокупность объектов со связями между ними. Характеристики ориентированного и смешанного графов. Алгоритм поиска кратчайшего пути между вершинами, алгоритм дейкстры. Алгебраическое построение матрицы смежности, фундаментальных резервов и циклов.
методичка [29,4 M], добавлен 07.06.2009Сущность и основные понятия теории графов, примеры и сферы ее использования. Формирование следствий из данных теорий и примеры их приложений. Методы разрешения задачи о кратчайшем пути, о нахождении максимального потока. Графическое изображение задачи.
курсовая работа [577,1 K], добавлен 14.11.2009Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.
презентация [247,7 K], добавлен 20.02.2015Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.
курсовая работа [118,7 K], добавлен 30.04.2011Постановка задачи коммивояжера и основные алгоритмы решения. Маршруты и пути. Понятия транспортной сети. Понятие увеличивающая дуга, цепь, разрез. Алгоритм Флойда-Уоршелл. Решение задачи аналитическим методом. Создание приложения для решения задачи.
курсовая работа [541,3 K], добавлен 08.10.2015Понятие и содержание теории графов. Правила построения сетевых графиков и требования к ним. Сетевое планирование в условиях неопределенности. Теория принятия решений, используемые алгоритмы и основные принципы. Пример применения алгоритма Дейкстры.
курсовая работа [1,0 M], добавлен 26.09.2013Суть задачи коммивояжера, ее применение. Общая характеристика методов ее решения: метод полного перебора, "жадные" методы, генетические алгоритмы и их обобщения. Особенности метода ветвей и границ и определение наиболее оптимального решения задачи.
курсовая работа [393,2 K], добавлен 18.06.2011