контрольная работа  Аппроксимация непрерывных функций многочленами

Главная задача теории аппроксимации. Основная теорема данной концепции в линейном нормированном пространстве и в пространстве Гильберта. Круг идей Чебышева, переход к периодическим функциям. Методы аппроксимации, приближение функции многочленами.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

 #####    ##   #####    ##     ##  
 #   #   #     #   #   #      #    
     #  #          #  #      #     
    #   ####      #   ####   ####  
    #   #   #     #   #   #  #   # 
   #    #   #    #    #   #  #   # 
   #     ###     #     ###    ###  
                                   

Введите число, изображенное выше:

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 02.11.2010
Размер файла 456,5 K

Подобные документы

  • Преобразование коэффициентов полиномов Чебышева. Функции, применяемые в численном анализе. Интерполяция многочленами, метод аппроксимации - сплайн-аппроксимация, ее отличия от полиномиальной аппроксимации Лагранжем и Ньютоном. Метод наименьших квадратов.

    реферат [21,5 K], добавлен 27.01.2011

  • Оценка неизвестных величин по результатам измерений, содержащим случайные ошибки, при помощи метода наименьших квадратов. Аппроксимация многочленами, обзор существующих методов аппроксимации. Математическая постановка задачи аппроксимации функции.

    курсовая работа [1,9 M], добавлен 12.02.2013

  • Способы построения интерполяционных многочленов Лагранжа, основные этапы. Интерполирование функций многочленами Ньютона, способы построения графика. Постановка задачи аппроксимации функции одной переменной, предпосылки повышения точности расчетов.

    презентация [204,5 K], добавлен 18.04.2013

  • Роль многочленов Чебышева в теории приближений и их использование в качестве узлов при интерполяции алгебраическими многочленами. Преимущества разложения функции по полиномам Чебышева. Разработка программы численного расчета решения подобной задачи.

    контрольная работа [184,2 K], добавлен 13.05.2014

  • Особенности метода аппроксимации табулированных функций. Рассмотрение преимуществ работы в среде математической программы Mathcad. Метод наименьших квадратов как наиболее распространенный метод аппроксимации экспериментальных данных, сферы применения.

    курсовая работа [1,2 M], добавлен 30.09.2012

  • Многочлены Чебышева. Многочлены равномерных приближений. Экономизация степенных рядов. Свойства многочлена Чебышева. Интерполяция по Чебышевским узлам. Многочлены равномерных приближений. Теорема Вейерштрасса. Кусочно-квадратичная аппроксимация.

    курс лекций [175,3 K], добавлен 06.03.2009

  • Интерполяция (частный случай аппроксимации). Аппроксимация функцией. Метод наименьших квадратов. Из курса математики известны 3 способа задания функциональных зависимостей: аналитический, графический, табличный.

    реферат [70,4 K], добавлен 26.05.2006

  • Задачи для обыкновенных дифференциальных уравнений. Квадратурные формулы. Теоретические основы метода сеток для решения задачи Коши. Погрешность аппроксимации, устойчивость, основная теорема метода сеток. Схема предиктор-корректор 2-го порядка.

    реферат [47,4 K], добавлен 07.12.2013

  • Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.

    курсовая работа [434,5 K], добавлен 14.03.2014

  • Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.

    курсовая работа [77,1 K], добавлен 02.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.