Приближение функций по формулам Ньютона и построение кривых
Основные свойства операции дифференцирования. Производные и дифференциалы высших порядков. Понятия интерполяции и аппроксимации. Интерполяционные формулы Ньютона при равноотстоящих узлах. Использование квадратурных формул для численного интегрирования.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 09.05.2021 |
Размер файла | 262,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.
курсовая работа [434,5 K], добавлен 14.03.2014В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.
контрольная работа [131,6 K], добавлен 05.01.2011Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).
реферат [71,6 K], добавлен 06.03.2011Иоганн Карл Фридрих Гаусс - величайший математик всех времен. Интерполяционные формулы Гаусса, дающие приближенное выражение функции y=f(x) при помощи интерполяции. Области применение формул Гаусса. Основные недостатки интерполяционных формул Ньютона.
контрольная работа [207,3 K], добавлен 06.12.2014Вычисление пределов функций. Нахождение производные заданных функций, решение неопределенных интегралов. Исследование функции и построение ее графика. Особенности вычисления площади фигуры, ограниченной линиями с использованием определенного интеграла.
контрольная работа [283,1 K], добавлен 01.03.2011Разделенные разности и аппроксимация функций методом наименьших квадратов. Интерполяционные многочлены Лагранжа и Ньютона. Экспериментальные данные функциональной зависимости. Система уравнений для полинома. Графики аппроксимирующих многочленов.
реферат [139,0 K], добавлен 26.07.2009Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.
лабораторная работа [481,0 K], добавлен 14.10.2013Решение задачи по вычислению определенного интеграла с помощью квадратурных формул и основная идея их построения. Количество параметров квадратурного выражения, степень подынтегральной функции. Построение квадратурных формул с плавающими узлами.
реферат [51,4 K], добавлен 08.08.2009Методы хорд и итераций, правило Ньютона. Интерполяционные формулы Лагранжа, Ньютона и Эрмита. Точечное квадратичное аппроксимирование функции. Численное дифференцирование и интегрирование. Численное решение обыкновенных дифференциальных уравнений.
курс лекций [871,5 K], добавлен 11.02.2012Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат [99,0 K], добавлен 05.09.2010Осуществление интерполяции с помощью полинома Ньютона. Уточнение значения корня на заданном интервале тремя итерациями и нахождение погрешности вычисления. Применение методов Ньютона, Сампсона и Эйлера при решении задач. Вычисление производной функции.
контрольная работа [155,2 K], добавлен 02.06.2011Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.
курсовая работа [299,3 K], добавлен 30.04.2011Решение дифференциального уравнения методом численного интегрирования Адамса. Методы, основанные на применении производных высших порядков. Формулы, обеспечивающие более высокую степень точности, требующие вычисления третьей производной искомого решения.
курсовая работа [81,9 K], добавлен 29.08.2010Кінцеві різниці різних порядків. Залежність між кінцевими різницями і функціями. Дискретний і неперервний аналіз. Поняття про розділені різниці. Інтерполяційна формула Ньютона. Порівняння формул Лагранжа і Ньютона. Інтерполяція для рівновіддалених вузлів.
контрольная работа [75,6 K], добавлен 06.02.2014Основные признаки возрастания и убывания функции. Максимум и минимум функций. План решения текстовых задач на экстремум. Производные высших порядков. Формулы Тейлора и Маклорена. Применение дифференциалов при оценке погрешностей. Длина плоской кривой.
курсовая работа [1,0 M], добавлен 25.11.2010Характеристика методов численного интегрирования, квадратурные формулы, автоматический выбор шага интегрирования. Сравнительный анализ численных методов интегрирования средствами MathCAD, а также с использованием алгоритмических языков программирования.
контрольная работа [50,8 K], добавлен 06.03.2011Рассмотрение основных способов решения задач на вычисление неопределенных и определенных интегралов по формулам Ньютона-Лейбница и Симпсона. Ознакомление с примерами нахождения области, ограниченной линиями, и объема тела, ограниченного поверхностями.
контрольная работа [194,2 K], добавлен 28.03.2014Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.
учебное пособие [659,6 K], добавлен 07.05.2012Вид определенного интеграла от непрерывной на заданном отрезке функции. Сущность квадратурных формул. Нахождение численного значения интеграла с помощью методов левых и правых прямоугольников, трапеций, парабол. Выведение общей формулы Симпсона.
презентация [120,3 K], добавлен 18.04.2013Биография Исаака Ньютона, его основные исследования и достижения. Описание порядка нахождения корня уравнения в рукописи "Об анализе уравнениями бесконечных рядов". Методы касательных, линейной аппроксимации и половинного деления, условие сходимости.
реферат [1,6 M], добавлен 29.05.2009