Планиметрические задачи с неоднозначностью условий (многовариантные задачи)
Решение упражнений по многовариантным и планиметрическим задачам с результатом неоднозначности в задании взаимного расположения элементов фигуры (типовые задания С4). Методические вопросы подготовки и причины возникновения многовариантности в задаче.
Рубрика | Математика |
Вид | краткое изложение |
Язык | русский |
Дата добавления | 06.05.2014 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.
методичка [335,0 K], добавлен 02.03.2010Составление математической модели задачи. Приведение ее к стандартной транспортной задаче с балансом запасов и потребностей. Построение начального опорного плана задачи методом минимального элемента, решение методом потенциалов. Анализ результатов.
задача [58,6 K], добавлен 16.02.2016Графическое решение задачи линейного программирования. Общая постановка и решение двойственной задачи (как вспомогательной) М-методом, правила ее формирования из условий прямой задачи. Прямая задача в стандартной форме. Построение симплекс таблицы.
задача [165,3 K], добавлен 21.08.2010Описание метода сведения краевой задачи к задаче Коши. Решение системы из двух уравнений с четырьмя неизвестными. Метод Рунге-Кутта. Расчет максимальной погрешности и выполнение проверки точности. Метод конечных разностей. Описание полученных результатов.
курсовая работа [245,2 K], добавлен 10.07.2012Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.
курсовая работа [1003,8 K], добавлен 29.11.2014Алгоритм конструирования: выделение опорных утверждений, решение задачи, выбор утверждений для перефразировки и их изменение, перефразировка, решение полученной задачи. Обобщение. Конструкция. Частный случай. Перефразировка. Варьирование условий.
реферат [18,7 K], добавлен 14.10.2002Решение систем уравнений по правилу Крамера, матричным способом, с использованием метода Гаусса. Графическое решение задачи линейного программирования. Составление математической модели закрытой транспортной задачи, решение задачи средствами Excel.
контрольная работа [551,9 K], добавлен 27.08.2009Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.
курсовая работа [118,7 K], добавлен 30.04.2011Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.
курсовая работа [132,2 K], добавлен 25.11.2011О происхождении задачи удвоения куба (одной из пяти знаменитых задач древности). Первая известная попытка решения задачи, решение Архита Тарентского. Решение задачи в Древней Греции после Архита. Решения с помощью конических сечений Менехма и Эратосфена.
реферат [630,3 K], добавлен 13.04.2014Предмет и задачи планиметрии, как раздела геометрии, в котором изучаются такие фигуры на плоскости, как точка, прямая, параллелограмм, трапеция, окружность и треугольник. Аксиомы принадлежности, расположения, измерения, откладывания, параллельности.
презентация [1,8 M], добавлен 22.10.2013Слабые асимптотики произведения функций Хевисайда. Решение задачи Коши методом прямого интегрирования. Оценка задачи со ступенчатой функцией в качестве начального условия. Предел на бесконечности, получаемый при неограниченном уменьшении малого параметра.
курсовая работа [1,9 M], добавлен 23.09.2016Применение математических и вычислительных методов в планировании перевозок. Понятие и виды транспортных задач, способы их решения. Особенности постановки задачи по критерию времени. Решение транспортной задачи в Excel, настройка параметров решателя.
курсовая работа [1,0 M], добавлен 12.01.2011Понятие окружности и круга, основные теоремы и свойства. Касание прямой и окружности, случаи их взаимного расположения. Вписанные и описанные фигуры. Относительное положение двух окружностей. Свойства хорд и расстояние до них. Определение длин и площадей.
презентация [536,1 K], добавлен 16.04.2012Математическое моделирование и особенности задачи распределения. Обоснование и выбор метода решения. Ручное решение задачи (венгерский метод), а также с использованием компьютера. Формулировка полученного результата в сопоставлении с условием задачи.
курсовая работа [383,9 K], добавлен 26.05.2010Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизвестными. Решение задач графическим методом. Выделение полуплоскости, соответствующей неравенству.
контрольная работа [23,5 K], добавлен 12.06.2011Методика решения задач высшей математики с помощью теории графов, ее сущность и порядок разрешения. Основная идея метода ветвей и границ, ее практическое применение к задаче. Разбиение множества маршрутов на подмножества и его графическое представление.
задача [53,0 K], добавлен 24.07.2009Решение задачи Коши для дифференциального уравнения. Погрешность приближенных решений. Функция, реализующая явный метод Эйлера. Вычисление погрешности по правилу Рунге. Решение дифференциальных уравнений второго порядка. Условие устойчивости для матрицы.
контрольная работа [177,1 K], добавлен 13.06.2012Способы построения искусственного базиса задачи. Выражение искусственной целевой функции. Математическая модель задачи в стандартной форме. Получение симплекс-таблиц. Минимизации (сведения к нулю) целевой функции. Формы преобразования в задаче равенства.
задача [86,0 K], добавлен 21.08.2010Сущность и содержание способа пропорций, определение вида зависимости. Обозначение неизвестного числа в пропорции буквой Х. Запись условий задачи в виде таблицы. Поиск неизвестного члена пропорции. Составление дополнительных пропорций для решения задачи.
презентация [96,9 K], добавлен 08.02.2010