Бінарні та n-арні ізотопи груп: основні алгебричні поняття та кількісні характеристики
Нові результати про основні алгебричні поняття та кількісні характеристики для бінарних та n-арних ізотопів груп. Перспектива подальшого вивчення n-арних ізотопів груп та розвитку теорії квазігруп при вивченні тотожностей та функційних рівнянь.
Рубрика | Математика |
Вид | автореферат |
Язык | украинский |
Дата добавления | 12.02.2014 |
Размер файла | 27,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основна теорема про епіморфізм груп. Означення і властивості гомоморфного та ізоморфного відображення кілець, полів. Ізоморфізм циклічних груп. Поняття кільця, поля та їх основні властивості. Вправи на гомоморфізм та ізоморфізм груп, кілець і полів.
дипломная работа [859,1 K], добавлен 19.09.2012Класифікація кінцевих простих неабелевих груп. Одержання факторизацій конкретних простих неабелевих груп та простих груп лієвського типу малого лієвського рангу. Ізометрії, проективні перетворення. Структурні теореми, порядки симплектичних груп.
дипломная работа [263,0 K], добавлен 26.12.2010Загальна характеристика системи Moodle. Поняття кільця та його найпростіші властивості. Алгебраїчна форма запису комплексного числа. Основні типи бінарних відношень. Властивості операцій над множинами. Лінійні комбінації і лінійні оболонки векторів.
дипломная работа [1,0 M], добавлен 26.02.2014Функціональні методи рішення тригонометричних і комбінованих рівнянь. Рішення тригонометричних нерівностей графічним методом. Відомість тригонометричних рівнянь до алгебраїчних. Перетворення й об'єднання груп загальних рішень тригонометричних рівнянь.
дипломная работа [773,7 K], добавлен 25.02.2011Схема класифікації та методи розв'язування рівнянь. Метод половинного ділення. Алгоритм. Метод хорд, Ньютона, їх проблеми. Граф-схема алгоритму Ньютона. Метод простої ітерації. Питання збіжності методу простої ітерації. Теорема про стискаючі відображення.
презентация [310,1 K], добавлен 06.02.2014Поняття про бінарні відношення, способи їх задання, існуючі операції, характерні властивості. Відношення еквівалентності, порядку, домінування й переваги. Поняття та значення R-оптимальності, найкращого, найгіршого, максимального й мінімального елементів.
реферат [1,3 M], добавлен 04.10.2015Вивчення існування періодичних рішень диференціальних систем і рівнянь за допомогою властивостей симетричності (парність, непарність). Основні теорії вектор-функцій, що відбивають. Побудова множини систем, парна частина загального рішення яких постійна.
курсовая работа [87,8 K], добавлен 20.01.2011Поняття добутку формацій. Операції на класах груп, відображення множини. Однорідні, локальні, композиційні та порожні екрани. Формації з однорідним екраном. Побудова локальних формацій із заданими властивостями. Доведення теорем Подуфалова та Слепова.
курсовая работа [189,3 K], добавлен 26.12.2010Основні поняття теорії диференціальних рівнянь. Лінійні диференціальні рівняння I порядку. Рівняння з відокремлюваними змінними. Розв’язування задачі Коші. Зведення до рівняння з відокремлюваними змінними шляхом введення нової залежної змінної.
лекция [126,9 K], добавлен 30.04.2014Вивчення закономірностей, властивих випадковим явищам. Комплекс заданих умов. Експериментальна перевірка випадкових явищ в однотипних умовах та необмежену кількість разів. Алгебра випадкових подій. Сутність, частота і ймовірність випадкової події.
реферат [151,8 K], добавлен 16.02.2011Загальні положення та визначення в теорії моделювання. Поняття і класифікація моделей, iмовірнісне моделювання. Статистичне моделювання, основні характеристики випадкових векторів. Описання програмного забезпечення для моделювання випадкових векторів.
дипломная работа [12,0 M], добавлен 25.08.2010Основні поняття з теорії рядів, характеристика методів підсумовування збіжних рядів. Особливості лінійних перетворень рядів, суть методів Ейлера, Куммера, Пуассона і Чезаро. Поняття суми розбіжного ряду, що задовольняє умовам регулярності і лінійності.
дипломная работа [2,1 M], добавлен 23.09.2012Сприймання і усвідомлення понять: випадкова подія, вірогідна подія, неможлива подія, повна група подій, попарно несумісні події, рівно можливі події, елементарні події. Вивчення ймовірнісних закономірностей масових однорідних випадкових подій.
реферат [24,9 K], добавлен 17.02.2009Вивчення властивостей підгрупи Фиттинга. Умова існування доповнень до окремих підгруп. Визначення нильпотентної довжини розв'язної групи. Доведення ізоморфності кінцевої нерозв'язної групи з нильпотентними додаваннями до непонадрозв'язних підгруп.
дипломная работа [198,6 K], добавлен 17.01.2011Основні поняття теорії ймовірностей, означення випробування, випадкової, масової, вірогідної та неможливої події. Правило суми і множення. Теорема додавання і теорема добутку ймовірностей. Використання геометричної ймовірності, Парадокс Бертрана.
научная работа [139,9 K], добавлен 28.04.2013Оцінки для числа ребер з компонентами зв‘язності. Орієнтовані графи, графи з петлями, графи з паралельними дугами. Ойлерова ломиголовка "Кенігзберзьких мостів". Основні поняття та означення ойлерових графів. Сутність та поняття гамільтонових графів.
курсовая работа [2,6 M], добавлен 18.07.2010Ознайомлення з історією виникнення теорії множин. Способи опису характеристичних властивостей множин. Декартовий добуток та бінарні відношення. Ін’єктивні, сюр’єктивні та бієктивні відображення. Поняття та властивості бінарної алгебраїчної операції.
лекция [2,5 M], добавлен 28.10.2014Побудова математичної логіки як алгебри висловлень і алгебри предикатів. Основні поняття логіки висловлювань та їх закони і нормальні форми. Основні поняття логіки предикатів і її закони, випереджена нормальна форма. Процедури доведення законів.
курсовая работа [136,5 K], добавлен 27.06.2008Основні поняття чисельних методів розв’язання систем лінійних алгебраїчних рівнянь. Алгоритм Гаусса зведення системи до східчастого виду послідовним застосуванням елементарних перетворень. Зворотній хід методу Жордана-Гаусса. Метод оберненої матриці.
курсовая работа [165,1 K], добавлен 18.06.2015Передумови виникнення та основні етапи розвитку теорії ймовірностей і математичної статистики. Сутність, розробка та цінність роботи Стьюдента. Основні принципи, що лежать в основі клінічних досліджень. Застосування статистичних методів в даній сфері.
контрольная работа [16,7 K], добавлен 27.11.2010