Законы больших чисел

Понятия случайного события и величины. Теорема Пуассона, Ляпунова и Бернулли, утверждающая, что если вероятность события одинакова, то с ростом числа испытаний частота события стремится к вероятности и перестает быть случайной. Закон "безобидных" игр.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 30.10.2013
Размер файла 195,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.

    курсовая работа [265,6 K], добавлен 21.01.2011

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Теорема Бернулли как простейшая форма закона больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Качественные и количественные утверждения закона больших чисел, его практическое применение.

    курсовая работа [75,2 K], добавлен 17.12.2009

  • Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.

    презентация [611,2 K], добавлен 17.08.2015

  • Нахождение вероятности события, используя формулу Бернулли. Составление закона распределения случайной величины и уравнения регрессии. Расчет математического ожидания и дисперсии, сравнение эмпирических и теоретических частот, используя критерий Пирсона.

    контрольная работа [167,7 K], добавлен 29.04.2012

  • Определение вероятности наступления заданного события. Расчет математических величин по формуле Бернулли и закону Пуассона. Построение эмпирической функции распределения, вычисление оценки математического ожидания и доверительных интегралов для него.

    курсовая работа [101,9 K], добавлен 26.03.2012

  • Определение вероятности случайного события, с использованием формулы классической вероятности, схемы Бернулли. Составление закона распределения случайной величины. Гипотеза о виде закона распределения и ее проверка с помощью критерия хи-квадрата Пирсона.

    контрольная работа [114,3 K], добавлен 11.02.2014

  • Алгоритм определения вероятности события и выполнения статистических ожиданий. Оценка возможных значений случайной величины и их вероятности. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Анализ характеристик признака.

    контрольная работа [263,8 K], добавлен 13.01.2014

  • Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы данного закона распределения с помощью критерия Колмогорова.

    курсовая работа [134,2 K], добавлен 31.05.2010

  • Случайные события, их классификация. Свойство статистической устойчивости относительной частоты события. Предельные теоремы в схеме Бернулли. Аксиоматическое и геометрическое определение вероятности. Локальная и интегральная теоремы Муавра-Лапласа.

    реферат [1,4 M], добавлен 18.02.2014

  • Определение вероятности наступления события по формуле Бернулли. Построение эмпирической функции распределения и гистограммы для случайной величины. Вычисление коэффициента корреляции, получение уравнения регрессии. Пример решения задачи симплекс-методом.

    контрольная работа [547,6 K], добавлен 02.02.2012

  • Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.

    курсовая работа [29,7 K], добавлен 31.05.2010

  • Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.

    контрольная работа [390,7 K], добавлен 29.05.2014

  • Теорема Бернулли на примере моделирования электросхемы. Моделирование случайной величины, имеющей закон распределения модуля случайной величины, распределенной по нормальному закону. Проверка критерием Х2: имеет ли данный массив закон распределения.

    курсовая работа [2,3 M], добавлен 31.05.2010

  • Использование формулы Бернулли для нахождения вероятности происхождения события. Построение графика дискретной случайной величины. Математическое ожидание и свойства интегральной функции распределения. Функция распределения непрерывной случайной величины.

    контрольная работа [87,2 K], добавлен 29.01.2014

  • Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.

    контрольная работа [480,0 K], добавлен 29.06.2010

  • Понятие вероятности, математического ожидания, закона больших чисел, динамика их развития. Введение аксиоматического определения понятия вероятности математического ожидания. Теоремы Бернулли и Пуассона как простейшие формы закона больших чисел.

    дипломная работа [388,7 K], добавлен 23.08.2009

  • Показатели безотказности как показатели надежности невосстанавливаемых объектов. Классическое и геометрическое определение вероятности. Частота случайного события и "статистическое определение" вероятности. Теоремы сложения и умножения вероятностей.

    курсовая работа [328,1 K], добавлен 18.11.2011

  • Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.

    шпаргалка [777,8 K], добавлен 24.12.2010

  • Классическая формула для вероятности события, отношение благоприятного числа исходов опыта к общему числу всех равновозможных несовместных исходов. Понятие непрерывной и дискретной случайной величины, их числовые характеристики и законы распределения.

    презентация [5,5 M], добавлен 19.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.