Применение рядов в приближенных вычислениях

Рассмотрение достаточных условий разложимости функции в ряд Тейлора. Изучение и анализ процесса применения рядов в приближенных вычислениях. Определение разложения некоторых элементарных функций в ряд Маклорена. Исследование применения степенных рядов.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 12.05.2023
Размер файла 49,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Особенности применения степенных рядов для вычислений с различной степенью точности значений функций и определенных интегралов. Рассмотрение примеров решения ряда задач этим математическим методом с условием принятия значений допустимой погрешности.

    презентация [68,4 K], добавлен 18.09.2013

  • Область сходимости степенного ряда. Нахождение пределов, вычисление определенных интегралов. Применение степенных рядов в приближенных значениях. Изучение особенностей решения дифференциальных уравнений. Достаточное условие разложимости функции в ряд.

    курсовая работа [1,3 M], добавлен 21.05.2019

  • Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.

    реферат [89,3 K], добавлен 08.06.2010

  • Исследование числовых рядов на сходимость. Область сходимости для разных степенных рядов. Разложение функции в ряд Тейлора. Нормы сеточной функции. Исследование устойчивости разностной схемы для однородного уравнения. Совокупность разностных уравнений.

    курсовая работа [586,9 K], добавлен 19.04.2011

  • Пределы функций и их основные свойства, операция предельного перехода, бесконечно малые функции. Производная функции, важнейшие правила дифференцирования, правило Лопиталя. Применение дифференциала функции в приближенных вычислениях, построение графиков.

    методичка [335,2 K], добавлен 18.05.2010

  • Производные от функций, заданных параметрически. Геометрический смысл дифференциала. Применение дифференциала в приближенных вычислениях. Теоремы Коши, Лагранжа и Ролля о дифференцируемых функциях, их геометрическая интерпретация. Правило Лопиталя.

    презентация [334,8 K], добавлен 14.11.2014

  • Основные понятия теории рядов. Методы суммирования расходящихся рядов. Суть метода степенных рядов, теоремы Абеля и Таубера. Метод средних арифметических, взаимоотношение между методами Пуассона-Абеля и Чезаро. Основные методы обобщенного суммирования.

    курсовая работа [288,0 K], добавлен 24.10.2010

  • Определение условий сходимости положительного ряда и описание свойств гармонических рядов Дирихле. Изучение теорем сравнения рядов и описание схемы Куммера для вывода из нее признаков сравнения ряда. Вывод признаков сравнения Даламбера, Раабе и Бертрана.

    курсовая работа [263,6 K], добавлен 14.06.2015

  • Понятия, связанные с рядами и дифференциальными уравнениями. Необходимый признак сходимости. Интегрирование дифференциальных уравнений с помощью рядов. Уравнение Эйри и Бесселя. Примеры интегрирования в Maple. Приближенные вычисления с помощью рядов.

    курсовая работа [263,9 K], добавлен 11.12.2013

  • Метод степенных рядов, применяемый для суммирования расходящихся рядов. Формулировка Пуассона, теорема Абеля. Метод средних арифметических и метод Чезаро. Знакопостоянный ряд натуральных чисел. Взаимоотношение между методами Пуассона-Абеля и Чезаро.

    реферат [313,4 K], добавлен 11.04.2014

  • Ознакомление с математическим аппаратом анализа временных рядов и моделями авторегрессии. Составление простейших моделей авторегрессии стационарных временных рядов. Оценка дисперсии и автоковариации, построение графика автокорреляционной функции.

    лабораторная работа [58,7 K], добавлен 14.03.2014

  • Решение неравенств и определение области сходимости рядов по признаку Даламбера и теореме Лейбница для знакопеременных рядов. Условия и пределы сходимости ряда. Исследование границ интервала. Проверка условия Лейбница при знакочередующемся ряде.

    контрольная работа [127,2 K], добавлен 07.09.2010

  • Изучение изменений анализируемых показателей во времени как важнейшая задача статистики. Понятие рядов динамики (временных рядов). Числовые значения того или иного статистического показателя, составляющего ряд динамики. Классификация рядов динамики.

    презентация [255,0 K], добавлен 28.11.2013

  • Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.

    курсовая работа [810,5 K], добавлен 24.11.2013

  • Особенности дифференциального исчисления. Использование правила Коши при разложении в ряд функций cos x и sin x для перемножения рядов. Запись элементов бесконечной матрицы в форме последовательности. Абсолютная сходимость рядов, порождаемых матрицей.

    курсовая работа [1012,0 K], добавлен 06.08.2013

  • Использование формулы Тейлора для разложения основных элементарных функций в степенной ряд. Сущность форм Лагранжа и Пеано, примеры вычисление пределов функций. Особенности использования принципа разложения в ряд на ЭВМ в режиме реального времени.

    курсовая работа [107,1 K], добавлен 29.04.2011

  • Изучение некоторых полугрупп, возникающих в статистических вычислениях, их основные свойства. Использование в статистике инвариантной меры, определение общего вида полухарактеров и характеров двух полугрупп, использующихся в анализе на полумодулях.

    курсовая работа [188,6 K], добавлен 08.01.2013

  • Понятие сходящихся рядов с комплексными числами. Действительные и мнимые части комплексной последовательности. Сумма и разность рядов в комплексными членами. Переход при помощи Эйлера от тригонометрической формы комплексного числа к показательной.

    презентация [110,0 K], добавлен 17.09.2013

  • Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.

    реферат [190,9 K], добавлен 06.12.2010

  • Полухарактеры и характеры. Принцип двойственности Понтрягина. Функциональная характеристика показательной функции. Исследование полугрупп, возникающих в статистических вычислениях. Введение в них инвариантной меры. Операторы Ганкеля и его свойства.

    курсовая работа [241,3 K], добавлен 08.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.