Алгебраические уравнения второй, третьей и четвертой степени
Описание способов решения уравнений второй, третьей и четвертой степени. Использование формулы Кардана, выражающего корни уравнения через его коэффициенты при помощи квадратных радикалов. Примеры решения уравнений второй, третьей и четвертой степени.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 08.02.2021 |
Размер файла | 259,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Выведение формулы решения квадратного уравнения в истории математики. Сравнительный анализ технологий различных способов решения уравнений второй степени, примеры их применения. Краткая теория решения квадратных уравнений, составление задачника.
реферат [7,5 M], добавлен 18.12.2012Уравнения, системы линейных, квадратных и третьей степени уравнений. Уравнения высших степеней сводящиеся к квадратным. Системы уравнений, три переменные. График квадратичной функции, пределы, производные. Интегральное счисление и примеры решения задач.
шпаргалка [129,6 K], добавлен 22.06.2008Системы уравнений. Запись в виде системы. Линейное уравнение с двумя переменными. Квадратные уравнения второй степени. Упрощенное уравнение третей степени. Переменная в четвертой степени. Множество корней (решений). Способ подстановки. Способ сложения.
реферат [96,3 K], добавлен 02.06.2008Решение биквадратных, симметричных и кубических уравнений, содержащих радикалы. Решение уравнений четвертой степени методом понижения степени и разложения на множители. Применение бинома Ньютона. Графический метод решения уравнений повышенной степени.
презентация [754,7 K], добавлен 29.05.2010Уравнения третьей степени и выше. Разложение левой части уравнения на множители, если правая часть равна нулю. Теорема Безу как один из методов, которые помогают решать уравнения высоких степеней. Определение и доказательство теоремы и следствия из нее.
научная работа [44,3 K], добавлен 25.02.2009Описание жизни Италии и мира того времени, когда жил и творил Джироламо Кардано. Научная деятельность математика, обзор его математических трудов и поиск решения кубических уравнений в радикалах. Способы решений уравнений третьей и четвертой степеней.
курсовая работа [419,7 K], добавлен 26.08.2011Основные понятия и определения кубических уравнений, способы их решения. Формула Кардано и тригонометрическая формула Виета, сущность метода перебора. Применение формулы сокращенного умножения разности кубов. Определение корня квадратного трехчлена.
курсовая работа [478,4 K], добавлен 21.10.2013Историческая справка об иррациональных уравнениях. Решение иррациональных уравнений. Преобразование иррациональных выражений. Уравнения с радикалом третьей степени. Введение нового неизвестного.
реферат [81,3 K], добавлен 09.04.2005Решение кубического уравнения на основе современных методов: разложение левой части на линейные множители; с помощью формулы Кардана; специальных таблиц. Рассмотрение метода решения кубических уравнений, включая неприводимый случай формулы Кардана.
задача [276,1 K], добавлен 20.02.2011История развития формул корней квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Решение квадратных уравнений Диофантом. Квадратные уравнения в Индии, в Хорезмии и в Европе XIII - XVII вв. Теорема Виета, современная алгебраическая запись.
контрольная работа [992,3 K], добавлен 27.11.2010Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.
научная работа [47,7 K], добавлен 05.05.2010Содержание текстов Единого государственного экзамена. Решение уравнений высших степеней. Разложение многочлена третьей степени на множители. Определение корней квадратного уравнения и рациональных корней многочлена. Старший коэффициент делимого.
реферат [42,1 K], добавлен 20.10.2013История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.
реферат [75,8 K], добавлен 09.05.2009Частное решение неоднородных дифференциальных уравнений. Геометрический смысл комплексного числа. Аргумент комплексного числа, его поиск с учетом четверти. Комплексное число в тригонометрической форме, извлечение корня третьей степени, формула Эйлера.
контрольная работа [24,8 K], добавлен 09.09.2009Знакомство с уравнениями и их параметрами. Решение уравнений первой степени с одним неизвестным, определение множества допустимых значений неизвестного. Понятие модуля числа, решение линейных уравнений с модулем и квадратных уравнений с параметром.
контрольная работа [122,1 K], добавлен 09.03.2011Уравнения Фредгольма и их свойства как классический пример интегральных уравнений с постоянными пределами интегрирования, их формы и степени, порядок формирования и решения. Некоторые приложения интегральных уравнений. Общая схема метода квадратур.
курсовая работа [97,2 K], добавлен 25.11.2011Решение дифференциального уравнения методом численного интегрирования Адамса. Методы, основанные на применении производных высших порядков. Формулы, обеспечивающие более высокую степень точности, требующие вычисления третьей производной искомого решения.
курсовая работа [81,9 K], добавлен 29.08.2010Теория инвариантов уравнения линии второго порядка от трех переменных, определение канонического уравнения. Общий пример решения задачи на определение вида и расположения поверхности, заданной относительно декартовой прямоугольной системы координат.
курсовая работа [1,1 M], добавлен 02.06.2013Подход к решению уравнений. Формулы разности степеней. Понижение формы члена уравнения. Компьютерный поиск данных чисел. Система Диофантовых уравнений. Значения натурального ряда. Уравнения с нечётным числом членов решений в натуральных числах.
доклад [166,1 K], добавлен 26.04.2009Историческая справка о возникновении и развитии теории неопределенных уравнений. Числовые сравнения и их свойства, а также линейные сравнения с одним неизвестным и методы их решения. Методы решения линейных диофантовых уравнений с двумя неизвестными.
курсовая работа [320,8 K], добавлен 01.07.2013