Конечные непримарные группы, все собственные фактор-группы которых примарны
Абелев неединичный член ряда коммутантов группы G. Порядок всякой силовской подгруппы группы G. Произвольная неразрешимая группа, являющаяся минимальным нормальным делителем. Проведение непосредственной комплексной проверки достаточности теоремы.
Рубрика | Математика |
Предмет | Математика |
Вид | статья |
Язык | русский |
Прислал(а) | alya.fialkova |
Дата добавления | 26.04.2019 |
Размер файла | 17,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Понятие алгебраической системы (группы), ключевые условия, которым она удовлетворяет и ее нейтральный элемент. Основные свойства группы. Мультипликативные и аддитивные циклические подгруппы и группы. Теорема Лагранжа и характеристика следствий из нее.
курсовая работа [173,6 K], добавлен 10.01.2015Теория групп как фундаментальное понятие и один из разделов современной математики. Основные определения и теоремы. Смежные классы: правые и левые, двойные. Нормальные подгруппы, фактор-группы. Способы их использования в решении различных задач.
курсовая работа [136,6 K], добавлен 30.03.2010Исследование свойств конечной разрешимой группы с заданными инвариантами подгруппы Шмидта. Основные свойства проекторов и инъекторов. Определение подгруппы группы, максимальной подгруппы группы, инъектора и биектора. Изложение теорем, следствий и лемм.
курсовая работа [177,7 K], добавлен 22.09.2009Исследование существования примарных нормальных подгрупп в бипримарных группах. Конечные бипримарные группы, разрешимые группы порядка. Порядки силовских подгрупп общей линейной группы. Доказательство лемм и теорем с использованием бинома Ньютона.
курсовая работа [527,0 K], добавлен 26.09.2009Неразрешимые конечные группы с нильпотентными добавлениями к несверхразрешимым подгруппам. Нормальные подгруппы конечных-обособленных груп. Факторизуемые группы с разрешимыми факторами нечетных индексов. Произведения 2-разложимых групп специальных видов.
курсовая работа [546,1 K], добавлен 26.09.2009Характеристика и основополагающие свойства силовых подгрупп конечных групп, определение и доказательство соответствующих лемм. Понятие и свойства супердобавлений. Строение группы с максимальной и силовской подгруппой, обладающей супердобавлением.
курсовая работа [489,5 K], добавлен 05.01.2010Конечные группы со сверхразрешимыми подгруппами четного и непримарного индекса. Неразрешимые группы с заданными подгруппами непримарного индекса. Классификация и строение конечных минимальных несверхразрешимых групп. Доказательство теорем и лемм.
курсовая работа [427,2 K], добавлен 18.09.2009Сущность теории групп. Роль этого понятия в математике. Мультипликативная форма записи операций, примеры групп. Формулировка сущности подгруппы. Гомоморфизмы групп. Полная и специальная линейная группы матриц. Классические группы малых размерностей.
курсовая работа [241,0 K], добавлен 06.03.2014Характеристика и изучение замкнутости класса всех конечных сверхразрешимых групп относительно подгрупп, фактор-групп и прямых произведений. Исследование свойств подгрупп конечной сверхразрешимой группы. Обзор свойств сверхразхрешимых групп в виде лемм.
курсовая работа [260,7 K], добавлен 06.06.2012Разрешимость факторизуемой группы с разложимыми факторами. Свойства конечных групп, являющихся произведением двух групп, одна из которых группа Шмидта, вторая - 2-разложимая. Произведение бипримарной и 2-разложимой групп. Доказательство теорем и лемм.
курсовая работа [475,0 K], добавлен 22.09.2009