Полномасштабная математическая модель переноса нейтронов в активной зоне реактора ВВЭР-1000, основанная на методе Монте-Карло и реализованная на многопроцессорных ЭВМ

Применение метода Монте-Карло для моделирования переноса нейтронов в ядерных реакторах. Моделирование трехмерных систем с произвольной геометрией с использованием комбинаторного подхода. Применение программы Призма для решения линейных задач переноса.

Рубрика Математика
Предмет Математическое моделирование
Вид статья
Язык русский
Прислал(а) Д.С. Олейник, М.А. Калугин, Е.А. Сухино-Хоменко
Дата добавления 15.01.2019
Размер файла 56,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Некоторые сведения теории вероятностей. Математическое ожидание, дисперсия. Точность оценки, доверительная вероятность. Доверительный интервал. Нормальное распределение. Метод Монте-Карло. Вычисление интегралов методом Монте-Карло. Алгоритмы метода.

    курсовая работа [112,9 K], добавлен 20.12.2002

  • Исследование способа вычисления кратных интегралов методом Монте-Карло. Общая схема метода Монте-Карло, вычисление определенных и кратных интегралов. Разработка программы, выполняющей задачи вычисления значений некоторых примеров кратных интегралов.

    курсовая работа [349,3 K], добавлен 12.10.2009

  • Математическое обоснование алгоритма вычисления интеграла. Принцип работы метода Монте–Карло. Применение данного метода для вычисления n–мерного интеграла. Алгоритм расчета интеграла. Генератор псевдослучайных чисел применительно к методу Монте–Карло.

    курсовая работа [100,4 K], добавлен 12.05.2009

  • Метод Монте-Карло як метод моделювання випадкових величин з метою обчислення характеристик їхнього розподілу, оцінка похибки. Обчислення кратних інтегралів методом Монте-Карло, його принцип роботи. Приклади складання програми для роботи цим методом.

    контрольная работа [41,6 K], добавлен 22.12.2010

  • Формула для начала счета методом прогонки С.К. Годунова. Метод дополнительных краевых условий. Второй вариант метода переноса краевых условий в произвольную точку интервала интегрирования. Метод переноса в произвольную точку интервала интегрирования.

    методичка [325,0 K], добавлен 13.07.2010

  • Параллельные методы решения систем линейных уравнений с ленточными матрицами. Метод "встречной прогонки". Реализация метода циклической редукции. Применение метода Гаусса к системам с пятидиагональной матрицей. Результаты численного эксперимента.

    курсовая работа [661,7 K], добавлен 21.10.2013

  • Метод Гаусса, метод прогонки, нелинейное уравнение. Метод вращения Якоби. Интерполяционный многочлен Лагранжа и Ньютона. Метод наименьших квадратов, интерполяция сплайнами. Дифференцирование многочленами, метод Монте-Карло и Рунге-Кутты, краевая задача.

    курсовая работа [4,8 M], добавлен 23.05.2013

  • Получение интервальной оценки. Построение доверительного интервала. Возникновение бутстрапа или практического компьютерного метода определения статистик вероятностных распределений, основанного на многократной генерации выборок методом Монте-Карло.

    курсовая работа [755,6 K], добавлен 22.05.2015

  • Основные определения теории уравнений в частных производных. Использование вероятностных, численных и эмпирических методов в решении уравнений. Решение прямых и обратных задач методом Монте-Карло на примере задачи Дирихле для уравнений Лапласа и Пуассона.

    курсовая работа [294,7 K], добавлен 17.06.2014

  • Методы решения систем линейных алгебраических уравнений (СЛАУ): Гаусса и Холецкого, их применение к конкретной задаче. Код программы решения перечисленных методов на языке программирования Borland C++ Builder 6. Понятие точного метода решения СЛАУ.

    реферат [58,5 K], добавлен 24.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.