Численно-аналитические методы и алгоритмы для исследования гамильтоновых систем ангармонических осцилляторов в классическом и квантовом подходах
Ангармонический осциллятор - колебательная система, в которой присутствует внешняя сила. Методы получения приближенной аналитической формулы спектра динамических моделей с использованием найденных классических траекторий и правила Бора-Зоммерфельда.
Рубрика | Математика |
Вид | автореферат |
Язык | русский |
Дата добавления | 26.03.2018 |
Размер файла | 149,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Возникновение и развитие теории динамических систем. Развитие методов реконструкции математических моделей динамических систем. Математическое моделирование - один из основных методов научного исследования.
реферат [35,0 K], добавлен 15.05.2007Анализ динамических процессов в системе на основе использования построенной аналитической модели. Моделирование с использованием пакета расширения Symbolic Math Tolbox. Построение модели в виде системы дифференциальных уравнений, записанных в форме Коши.
курсовая работа [863,4 K], добавлен 21.06.2015Задача исследования устойчивости нелинейной динамической системы. Аппроксимации функций с использованием обобщений полиномов Бернштейна. Анализ скорости сходимости и эффективности итерационной формулы, сравнение с классическими численными методами.
дипломная работа [1002,2 K], добавлен 23.06.2011Теоретические основы учебных исследований по математике с использованием динамических моделей. Содержание динамических чертежей. Гипотезы о свойствах заданной геометрической ситуации. Проектирование процесса обучения геометрии в общеобразовательной школе.
курсовая работа [241,8 K], добавлен 26.11.2014Аналитические свойства интегральных преобразований. Интеграл Коши на различных кривых. Аналитическая зависимость от параметра. Существование производных всех порядков у аналитической функции. Вывод формулы Коши и формулировка следствий из данной формулы.
курсовая работа [260,2 K], добавлен 10.04.2011Дифференциальные уравнения как модели эволюционных процессов. Автономные системы дифференциальных уравнений и их фазовые пространства. Асимптотическая устойчивость линейных однородных автономных систем. Изображения фазовых кривых при помощи ПО Maple.
дипломная работа [477,4 K], добавлен 17.06.2015Численные методы решения систем линейных алгебраических уравнений, алгоритмы, их реализующие. Нормы матриц и векторов, погрешность приближенного решения системы и обусловленность матриц. Интеграционные методы решения: методы простой итерации, релаксации.
учебное пособие [340,6 K], добавлен 02.03.2010Дифференциальное уравнение с начальными данными. Свойства предельных множеств автономных систем. Приближенное решение дифференциальных уравнений. Вопрос о сходимости ряда. Предельные множества траекторий автономных систем, состоящие из целых траекторий.
реферат [1,1 M], добавлен 12.12.2012Некоторые математические вопросы теории обслуживания сложных систем. Организация обслуживания при ограниченной информации о надёжности системы. Алгоритмы безотказной работы системы и нахождение времени плановой предупредительной профилактики систем.
реферат [1,4 M], добавлен 19.06.2008Математические методы распознавания (классификации с учителем) и прогноза. Кластеризация как поиск оптимального разбиения и покрытия. Алгоритмы распознавания и интеллектуального анализа данных. Области практического применения систем распознавания.
учебное пособие [2,1 M], добавлен 14.06.2014Роль и место учебных исследований в обучении математике. Содержание и методические особенности проектирования учебных исследований по теме "Четырехугольники" на основе использования динамических моделей. Структура учебного исследования по математике.
курсовая работа [720,9 K], добавлен 28.05.2013Применение в статистике конкретных методов в зависимости от заданий. Методы массовых наблюдений, группировок, обобщающих показателей, динамических рядов, индексный метод. Корреляционный и дисперсный анализ. Расчет средних статистических величин.
контрольная работа [29,5 K], добавлен 21.09.2009Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.
курсовая работа [261,6 K], добавлен 05.09.2009Рассмотрение теории дифференциальных уравнений. Выделение классов уравнений с систем, решения которых не имеют подвижных критических особых точек. Установление достаточности найденных условий путем сравнения с классическими системами типа Пенлеве.
курсовая работа [137,0 K], добавлен 01.06.2015Итерационные методы (методы последовательных приближений) для решения уравнений. Одношаговые итерационные формулы. Метод последовательных приближений Пикара. Возникновение хаоса в детерминированных системах. Методы решения систем алгебраических уравнений.
контрольная работа [166,2 K], добавлен 04.09.2010Анализ движения математического маятника без трения в случае произвольных колебаний. Построение численно соответствующих кривых движения при различных начальных условиях. Закон движения маятника в эллиптических функциях, графики его траекторий.
курсовая работа [1,2 M], добавлен 08.04.2014Открытие формулы австрийским математиком Георгом Пиком в 1899 году. Доказательство Теоремы Пика, последовательность этапов для различных вариантов. Нахождение и расчет площадей четырехугольников в квадратных сантиметрах с использованием данной формулы.
презентация [1,1 M], добавлен 14.04.2013Структурное преобразование схемы объекта и получение в дифференциальной форме по каналам внешних воздействий. Формы представления вход-выходных математических моделей динамических, звеньев и систем, методов их построения, преобразования и использования.
курсовая работа [1,3 M], добавлен 09.11.2013Основные понятия и свойства эйлеровых и гамильтоновых цепей и циклов в теории графов. Изучение алгоритма Дейкстры и Флойда для нахождения кратчайших путей в графе. Оценки для числа ребер с компонентами связанности. Головоломка "Кенигзберзьких мостов".
курсовая работа [2,4 M], добавлен 08.10.2014Использование метрики Чебышева. Формулы для нахождения расстояний между точками. Использование евклидовой метрики. Центры тяжести кластеров. Разбивка массивов точек на классы. Суммарная выборочная дисперсия разброса элементов относительно центров классов.
методичка [950,4 K], добавлен 20.05.2013