Начертательная геометрия
Метод ортогонального проецирования Г. Монжа. Плоский чертеж как результат совмещения двух плоскостей (проекций) с помощью вращения вокруг общей линии. Необходимость изучения начертательной геометрии и черчения. Описание и понятие комплексного чертежа.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 16.10.2017 |
Размер файла | 18,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Понятие начертательной геометрии, ее сущность и особенности, предмет и методы изучения, история зарождения и развития. Цели и задачи начертательной геометрии, ее структура и элементы. Прямая и варианты ее расположения, разновидности и методы определения
лекция [451,3 K], добавлен 21.02.2009Основные положения теоретического курса по начертательной геометрии. Эпюры - примеры построения, а также подробные описания методов решения. Описание решения типовых задач по каждой теме начертательной геометрии и их основные теоретические положения.
учебное пособие [8,1 M], добавлен 16.10.2011Замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Линейчатые поверхности вращения. Точка на поверхности тора и сферы. Понятие меридиональной плоскости. Преобразование комплексного чертежа. Метод замены плоскостей проекций.
презентация [69,8 K], добавлен 27.10.2013Понятие и технологии проецирования, особенности применения компьютерных технологий в данном процессе, его типы и признаки. Свойства параллельного проецирования. Комплексный чертеж точки (эпюр Г. Монжа). Взаимное расположение точек, его принципы.
контрольная работа [693,6 K], добавлен 22.11.2013Начертательная геометрия - прикладная наука. Комплексный чертеж плоскости. Взаимные пересечения плоскостей, их перпендикулярность и параллельность с прямыми. Сечение поверхности сферы плоскостями. Пересечение поверхностей, аксонометрические проекции.
методичка [4,2 M], добавлен 03.02.2013Ортогональное проецирование точки в разные плоскости. Проецирование прямой линии по плоскостям проекций. Плоскость на эпюре Монжа, позиционные и метрические задачи. Многогранники, кривые линии и аксонометрические поверхности, касательные и сечение.
учебное пособие [3,6 M], добавлен 07.01.2012Понятие чертежа и определение значения в жизни человека, история становления и развития, основные правила оформления. Разновидности чертежных шрифтов и особенности их применения. Правила нанесения размеров и вычисление масштабов. Понятие проецирования.
контрольная работа [505,8 K], добавлен 26.05.2010- Свойства и особенности ортогонального проецирования, используемые при разработке графических моделей
Условия отображения формы и размеров геометрического объекта при его моделировании. Виды проецирования, используемые при разработке графических моделей. Свойства ортогонального проецирования, отображение на комплексном чертеже точки, прямой и плоскости.
реферат [1,2 M], добавлен 01.04.2011 Теорема о проецировании прямого угла, возможные три случая такого проецирования. Главные линии плоскости: линии уровня и линии наибольшего наклона. Прямая, перпендикулярная к плоскости и ее проекции. Условие взаимной перпендикулярности двух плоскостей.
реферат [463,3 K], добавлен 17.10.2010Биографии и описание деятельности великих математиков: Паскаля, Бернулли, Дезарга, Ньютона, Ферма, Декарта, Эйлера, Монжа, Фурье, Лагранжа, Виета, Лейбница. Алгебраические методы в геометрии. Аналитическая геометрия Ферма. Аналитическая геометрия Декарта.
реферат [1,7 M], добавлен 14.01.2011Геометрия на Востоке. Греческая геометрия. Геометрия новых веков. Классическая геометрия XIX века. Неевклидовая геометрия. Геометрия XX века. Современная геометрия во многих своих дисциплинах выходит далеко за пределы классической геометрии.
реферат [32,3 K], добавлен 14.07.2004Четыре основные задачи, решаемые методами преобразования. Сущность способа замены плоскостей проекций. Решение ряда задач по преобразованию прямой общего положения в прямую уровня, а затем - в проецирующую, выполнив последовательно два преобразования.
реферат [185,5 K], добавлен 17.10.2010Решение задач по геометрии. Составление кроссвордов на тему "Тела и фигуры вращения". Математика и история. Модель "Седла" - пример криволинейной поверхности. Изучение основных тел. Движение твердого тела вокруг неподвижной точки. Теорема Пифагора.
творческая работа [688,6 K], добавлен 13.04.2014Порядок проведения эксперимента "Иллюзии зрения", его сущность и содержание. Постулаты Евклидовой геометрии. Аксиомы геометрии Лобачевского. Сравнительный анализ двух геометрий, их отличительные и сходные черты, особенности преподнесения, доказательства.
презентация [872,8 K], добавлен 24.02.2011Происхождение Неевклидовой геометрии. Возникновение "геометрии Лобачевского". Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами).
реферат [319,1 K], добавлен 06.03.2009Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.
презентация [993,0 K], добавлен 12.04.2015Элементы общей теории многомерных пространств. Понятие векторного многомерного пространства на основе аксиоматики Вейля. Евклидово векторное пространство. Четырёхмерное пространство, его пределение и исследование. Применение многомерной геометрии.
дипломная работа [1,0 M], добавлен 24.02.2010Метод координат. Основные задачи аналитической геометрии на прямой и на плоскости. Основные линии второго порядка. Алгебраическая и геометрическая интерпретация векторов. Уравнение поверхности и уравнение линии в пространстве. Общее уравнение плоскости.
учебное пособие [687,5 K], добавлен 04.05.2011Изучение истории развития геометрии, анализ постулатов Евклида, аксиоматики Гильберта, обзор других систем аксиом геометрии. Характеристика неевклидовых геометрий в системе Вейля. Элементы сферической геометрии. Различные модели плоскости Лобачевского.
дипломная работа [245,5 K], добавлен 13.02.2010Научно-методические достоинства учебного пособия по геометрии Погорелова. Анализ недостатков учебника "Геометрия 7-9". Структура основных взаимосвязей в системе определений и теорем в курсе геометрии. Подготовка учителя к доказательству теорем на уроке.
дипломная работа [321,5 K], добавлен 11.01.2011