Приближенное интегрирование функций
Квадратурная формула Ньютона-Котеса, ее характеристика и частные случаи. Анализ квадратурной формулы Гаусса. Приближенное вычисление несобственных интегралов. Кубатурные формулы типа Симпсона как метод приближенного вычисления двойного интеграла.
Рубрика | Математика |
Предмет | Математика |
Вид | лекция |
Язык | русский |
Прислал(а) | Incognito |
Дата добавления | 26.09.2017 |
Размер файла | 116,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Построение квадратурной формулы максимальной степени точности. Определение алгебраической степени точности указанной квадратурной формулы. Сравнительный анализ квадратурных формул средних прямоугольников и трапеций на примере вычисления интеграла.
лабораторная работа [195,9 K], добавлен 21.12.2015Использование численных методов, позволяющих найти приближенное значение определенного интеграла с заданной точностью. Анализ формул трапеции и параболы (Симпсона). Основной принцип построения формул приближенного вычисления определенного интеграла.
презентация [96,6 K], добавлен 18.09.2013Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат [99,0 K], добавлен 05.09.2010Вычисление двойного интеграла в прямоугольных координатах. Замена переменных в двойном интеграле. Аналог формул прямоугольников и формулы трапеции. Теорема существования двойного интеграла, его геометрический и физический смысл и основные свойства.
курсовая работа [1,3 M], добавлен 13.02.2013Иоганн Карл Фридрих Гаусс - величайший математик всех времен. Интерполяционные формулы Гаусса, дающие приближенное выражение функции y=f(x) при помощи интерполяции. Области применение формул Гаусса. Основные недостатки интерполяционных формул Ньютона.
контрольная работа [207,3 K], добавлен 06.12.2014Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.
курсовая работа [2,9 M], добавлен 11.07.2012Непосредственное (элементарное) интегрирование, вычисление интегралов с помощью основных свойств неопределенного интеграла и таблицы интегралов. Метод замены переменной (метод подстановки). Интегрирование по частям, определение точности интегралов.
презентация [117,8 K], добавлен 18.09.2013Обзор квадратурных формул Гаусса, их определение, интегральные конструкции, примеры, четко описывающие квадратуры Гаусса. Особенности использования некоторых алгоритмов, позволяющих отследить ход решений задач, использующих квадратурные формулы Гаусса.
контрольная работа [309,6 K], добавлен 16.12.2015Решение задачи по вычислению определенного интеграла с помощью квадратурных формул и основная идея их построения. Количество параметров квадратурного выражения, степень подынтегральной функции. Построение квадратурных формул с плавающими узлами.
реферат [51,4 K], добавлен 08.08.2009Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.
презентация [1,2 M], добавлен 15.01.2014