Группировки и кластерный анализ

Кластерный анализ как инструмент группировки объектов. Коэффициенты оценки подобия на практике. Задача кластерного анализа. Иерархические методы его применения. Проверка качества кластеризации. Методика применения основных методов кластерного анализа.

Рубрика Математика
Предмет Математическая статистика
Вид курс лекций
Язык русский
Прислал(а) incognito
Дата добавления 19.09.2017
Размер файла 209,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Классификация методов кластеризации и их характеристика. Метод горной кластеризации в Matlab. Возможная область применения кластеризации в различных предметных областях. Математическое описание метода. Пример использования метода на реальных данных.

    реферат [187,0 K], добавлен 28.10.2010

  • Методика проведения группировки объектов на основе алгоритма K-средних, используя рандомизацию исходных данных (объединенной центрированной матрицы наблюдений). Оценка требуемого числа итераций. Расчет расстояния от объектов до новых центров кластеров.

    практическая работа [195,6 K], добавлен 20.09.2011

  • Общее понятие о дисперсионном анализе, его сущность и значение. Использование INTERNET и компьютера для проведения дисперсионного анализа, особенности работы в среде MS Excel. Примеры применения однофакторного и двухфакторного дисперсионного анализа.

    курсовая работа [820,4 K], добавлен 17.02.2013

  • Подходы к оценке кредитного риска: недостатки методик Базеля II. Модели оценки: качество и прозрачность методик, структура данных. Скоринговые методики, кластерный и дискриминантный анализ, нейронные сети и дерево классификаций, data mining и регрессии.

    курсовая работа [3,3 M], добавлен 21.08.2008

  • Главная задача спектрального анализа временных рядов. Параметрические и непараметрические методы спектрального анализа. Сущность понятия "временный ряд". График оценки спектральной плотности для окна Дирихле, при центрированном случайном процессе.

    курсовая работа [332,8 K], добавлен 17.09.2009

  • Изучение основных вопросов теории графов и области ее применения на практике. Разработка алгоритма кластеризации по предельному расстоянию и построение минимального остовного дерева каждого кластера. Результаты тестирований работы данного алгоритма.

    курсовая работа [362,9 K], добавлен 24.11.2010

  • Математические методы распознавания (классификации с учителем) и прогноза. Кластеризация как поиск оптимального разбиения и покрытия. Алгоритмы распознавания и интеллектуального анализа данных. Области практического применения систем распознавания.

    учебное пособие [2,1 M], добавлен 14.06.2014

  • Проведение аналитической группировки и дисперсионного анализа данных, с целью количественно определить тесноту связи. Определение степени корреляции между группировочными признаками и вариационной зависимости переменной, обусловленной регрессией.

    контрольная работа [140,5 K], добавлен 17.08.2014

  • Функциональные и стохастические связи. Статистические методы моделирования связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Проверка адекватности регрессионной модели.

    курсовая работа [214,6 K], добавлен 04.09.2007

  • Понятие и история развития криптографии как науки, предмет и методы ее исследования. Существующие шифры и закономерности процесса шифрования. Сравнительное описание шифров Плейфера и Тритемиуса, условия и анализ примеров их применения на практике.

    курсовая работа [66,2 K], добавлен 07.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.