Сопровождающий трёхгранник кривой
Способы получения уравнения касательной. Определение нормали и инвариантов плоской кривой. Построение соприкасающихся и спрямляющихся плоскостей. Выражение кривизны и кручения через произвольный радиус-вектор. Параметрические уравнения поверхности.
Рубрика | Математика |
Предмет | Геометрия |
Вид | лекция |
Язык | русский |
Прислал(а) | Аля |
Дата добавления | 01.09.2017 |
Размер файла | 829,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.
контрольная работа [329,5 K], добавлен 19.12.2014Арифметическая теория квадратичных форм, их практическое применение в приведении уравнения кривой и поверхности второго порядка к каноническому виду. Самосопряженный оператор, его характеристика, использование и функции. Собственные числа и вектора.
курсовая работа [277,9 K], добавлен 28.11.2012Исследование кривой второго порядка. Определение типа кривой с помощью инвариантов. Приведение к каноническому виду, построение графиков. Исследование поверхности второго порядка. Определение типа поверхности. Анализ формы поверхности методом сечений.
курсовая работа [231,0 K], добавлен 28.06.2009Нахождение уравнения гиперболы при заданном значении вещественной полуоси. Вычисление предела функции и ее производных. Составление уравнения нормали к кривой. Решение системы алгебраических уравнений методом Гаусса и при помощи формулы Крамера.
контрольная работа [871,9 K], добавлен 12.10.2014Понятие дифференциального уравнения. Нахождение первообразной для заданной функции. Нахождение решения дифференциального уравнения. Выделение определенной интегральной кривой. Понятие произвольных независимых постоянных. Уравнение в частных производных.
презентация [42,8 K], добавлен 17.09.2013Общее уравнение кривой второго порядка. Составление уравнений эллипса, окружности, гиперболы и параболы. Эксцентриситет гиперболы. Фокус и директриса параболы. Преобразование общего уравнения к каноническому виду. Зависимость вида кривой от инвариантов.
презентация [301,4 K], добавлен 10.11.2014Основные признаки поверхности. Эллипсоид: понятие; плоскости симметрии. Сфера как замкнутая поверхность. Параметрические уравнения тора и катеноида. Общее понятие про геликоид. Параболоид как поверхность вращения. Параметрические уравнения цилиндра.
реферат [950,6 K], добавлен 21.11.2010Задачи, приводящие к понятию производной. Особенности определения с помощью этого основного понятия дифференциального исчисления уравнения касательной к непрерывной кривой в заданной точке, скорости, производительности труда в определенный момент времени.
презентация [263,8 K], добавлен 21.09.2013Приведение уравнения к каноническому виду при помощи преобразований параллельного переноса и поворота координатных осей. Нахождение фокусов, директрис, эксцентриситета и асимптот кривой. Построение графика кривой в канонической и общей системах координат.
контрольная работа [133,5 K], добавлен 12.01.2011Определение типа кривой по виду уравнения, уравнение с угловым коэффициентом, в отрезках и общее уравнение. Определение медианы, уравнения средней линии в треугольнике. Вопросы по линейной алгебре. Решение системы уравнения при помощи обратной матрицы.
контрольная работа [97,5 K], добавлен 31.10.2010