Похідна і диференціал функції
Задачі, які приводять до поняття похідної, означення похідної. Диференційовність та неперервність, правила диференціювання. Похідна алгебраїчної суми диференційовних функцій та складної і оберненої функції. Диференціювання основних елементарних функцій.
Рубрика | Математика |
Предмет | Математика |
Вид | курс лекций |
Язык | украинский |
Прислал(а) | inсognito |
Дата добавления | 22.07.2017 |
Размер файла | 384,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Поняття диференційованості функції в даній точці, основні формули. Диференціал функції однієї змінної, його застосування. Основні означення, які відносяться до функції кількох змінних. Похідна алгебраїчної суми скінченного числа диференційованих функцій.
реферат [101,8 K], добавлен 02.11.2015Сутність фізичного та геометричного змісту похідної, особливості його використовування у математичних задачах. Означення диференціалу, формула його обчислення. Екстремуми функцій двох змінних. Правила знаходження найбільшого і найменшого значення функції.
презентация [262,6 K], добавлен 20.05.2015Частинні похідні та диференційованість функції: поняття та теореми. Повний диференціал функції та його застосування до обчислення функцій і похибок. Диференціали вищих порядків. Інваріантність форми повного диференціала. Диференціювання неявної функції.
реферат [278,8 K], добавлен 02.05.2011Похідна як основне поняття диференційного числення, що характеризує швидкість зміни функції, границя відношення приросту функції до приросту аргументу. Приклади знаходження похідної за визначенням. Похідні вищих порядків, геометричний зміст похідної.
презентация [49,6 K], добавлен 16.02.2011Елементи диференціального і інтегрального числення в лінійних нормованих просторах: диференціал і похідна Фреше, теореми (про диференційовність композиції відображень, про скінченні прирости), похідна Гато. Похідні Фреше та Гато в прикладах і задачах.
дипломная работа [456,6 K], добавлен 20.08.2010Означення модуля неперервності та його властивості. Дослідження поведінки найкращих наближень неперервної функції алгебраїчними многочленами на базі властивостей введених Діціаном і Тотіка. Вирішення оберненої задачі. Узагальнення теореми Джексона.
курсовая работа [1016,1 K], добавлен 09.07.2015Неперервність функцій в точці, області, на відрізку. Властивості неперервних функцій. Точки розриву, їх класифікація. Знаходження множини значень функції та нулів функції. Розв’язування рівнянь. Дослідження функції на знак. Розв’язування нерівностей.
контрольная работа [179,7 K], добавлен 04.04.2012Задачі обчислювальної математики. Алгоритми розв'язування багатьох стандартних задач обчислювальної математики. Обчислення інтерполяційного полінома Лагранжа для заданої функції. Виконання обчислення першої похідної на основі другої формули Ньютона.
контрольная работа [67,1 K], добавлен 27.03.2012Означення та приклади застосування гармонічних функцій. Субгармонічні функції та їх деякі властивості. Розв’язок задачі Діріхле з використанням функції Гріна. Теореми зростання та спадання функції регулярної в нескінченній області (Фрагмена-Ліндельофа).
курсовая работа [349,0 K], добавлен 10.09.2013Обчислення меж гіперболічних функцій та замінна змінного. Порівняння гіперболічних і зворотних до них функцій. Диференціювання зворотних гіперболічних функцій, невизначений інтеграл. Розкладання гіперболічних функцій по формулах Тейлора та Маклорена.
курсовая работа [2,0 M], добавлен 11.02.2011