Основная теорема арифметики и некоторые ее приложения

Характеристика основной теоремы арифметики и ее роли. Рассмотрение различных колец, в которых она выполняется. Идея изучения математических объектов путем факторизации (разбиения) их на более простые математические объекты. Решение диофантовых уравнений.

Рубрика Математика
Предмет Теория чисел
Вид статья
Язык русский
Прислал(а) Лаптев Владимир Николаевич
Дата добавления 20.05.2017
Размер файла 76,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.

    научная работа [22,6 K], добавлен 12.06.2009

  • Доказательство великой теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений и методов замены переменных. Теорема о единственности разложения на простые множители целых составных чисел.

    статья [29,4 K], добавлен 21.05.2009

  • Особенности решения задач Диофантовой "Арифметики", которые решаются с помощью алгебраических уравнений или системы алгебраических уравнений с целыми коэффициентами. Характеристика великой теоремы Ферма, анализ и методы приминения алгоритма Евклида.

    реферат [36,8 K], добавлен 03.03.2010

  • Пьер де Ферма сделал почти 370 лет назад свою запись на полях арифметики Диофанта. Натуральные взаимно простые числа, не имеющие общих целых множителей, кроме 1. Пример справедливости приведенного доказательства.

    статья [31,8 K], добавлен 19.12.2006

  • Делимость в кольце чисел гаусса. Обратимые и союзные элементы. Деление с остатком. Алгоритм евклида. Основная теорема арифметики. Простые числа гаусса. Применение чисел гаусса.

    дипломная работа [209,2 K], добавлен 08.08.2007

  • Понятие Диофантовых уравнений, их сущность и особенности, методика и этапы решения. Великая теорема Ферма и порядок ее доказательства. Алгоритм решения иррациональных уравнений. Метод поиска Пифагоровых троек. особенности решения уравнения Каталана.

    учебное пособие [330,2 K], добавлен 23.04.2009

  • Основные понятия и результаты, связанные с теорией диофантовых уравнений, теорией эллиптических кривых и abc-гипотезой. Метод бесконечного спуска и доказательство теоремы Ферма для n=4. Анализ выводов К. Рибета Великой теоремы Ферма из гипотезы Таниямы.

    дипломная работа [351,4 K], добавлен 26.05.2012

  • Метод исследования Диофантовых уравнений и решенные этим методом: теорема Ферма, уравнение Пелля, эллиптических кривых, иррациональные корни уравнения, поиск Пифагоровых троек, уравнение Каталана, гипотезы Билля. Закон распределения простых чисел.

    доклад [323,1 K], добавлен 01.05.2009

  • Основы геометрии чисел. Решетки, подрешетки и их базисы. Основные теоремы геометрии чисел. Связь квадратичных форм с решетками. Методы геометрии чисел для решения диофантовых уравнений. Теорема Минковского о выпуклом теле. Квадратичная форма решетки.

    дипломная работа [884,6 K], добавлен 24.06.2015

  • История арифметики остатков. Понятие остатка, наибольшего общего делителя, расширенного алгоритма Евклида и применение его для решения линейных диофантовых уравнений. Алгебраический подход к делимости в кольцах и разложение чисел в цепные дроби.

    дипломная работа [466,7 K], добавлен 23.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.