Двухвыборочный критерий Вилкоксона
Описание асимптотических свойств двухвыборочного критерия Манна-Уитни (Вилкоксона), одного из наиболее известных непараметрических статистических критериев для проверки совпадения (тождественного равенства) функций распределения двух независимых выборок.
Рубрика | Математика |
Предмет | Математика |
Вид | статья |
Язык | русский |
Прислал(а) | Аля |
Дата добавления | 19.05.2017 |
Размер файла | 43,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Ознакомление с механизмом проверки гипотезы для случая единственной выборки, двух и нескольких независимых выборок. Проверка совпадений карт, выбор фильмов разных жанров. Обоснование результатов, полученных после проверки статистических гипотез.
курсовая работа [726,2 K], добавлен 26.02.2015Основные понятия математической статистики, интервальные оценки. Метод моментов и метод максимального правдоподобия. Проверка статистических гипотез о виде закона распределения при помощи критерия Пирсона. Свойства оценок, непрерывные распределения.
курсовая работа [549,1 K], добавлен 07.08.2013Критерий согласия – критерий проверки гипотезы о предполагаемом законе распределения генеральной совокупности. Критерий Колмогорова-Смирнова и его практическое применение. Критические значения статистик Стефенса. Критерии Пирсона и Смирнова-Крамера.
курсовая работа [629,9 K], добавлен 26.08.2012- Закон больших чисел. Проверка статистических гипотез (критерий согласия w2 Мизеса: простая гипотеза)
Предельные теоремы теории вероятностей. Сходимость последовательностей случайных величин и вероятностных распределений. Метод характеристических функций. Закон больших чисел. Особенности проверки статистических гипотез (критерия согласия w2 Мизеса).
курсовая работа [1,0 M], добавлен 27.01.2012 Случайная выборка объема как совокупность независимых случайных величин. Математическая модель в одинаковых условиях независимых измерений. Определение длины интервала по формуле Стерджесса. Плотность относительных частот, критерий согласия Пирсона.
контрольная работа [90,4 K], добавлен 17.10.2009Критерии выбросов в случае нормального распределения, их асимптотические свойства и эмпирическая мощность. Исследование распределения статистик по критериям Колмогорова и Смирнова. Реализация критериев определения выбросов в статистическом пакете R.
курсовая работа [521,9 K], добавлен 10.01.2016Числовые характеристики непрерывных величин. Точечные оценки параметров распределения. Статистическая проверка гипотез. Сравнение средних известной и неизвестной точности измерений. Критерий Хи-квадрат для проверки гипотезы о виде распределения.
курсовая работа [79,0 K], добавлен 23.01.2012Обработка одномерной и двумерной случайных выборок. Нахождение точечных оценок. Построение гистограммы функций распределения, корреляционной таблицы. Нахождение выборочного коэффициента корреляции. Построение поля рассеивания, корреляционные отношения.
курсовая работа [1,3 M], добавлен 10.06.2013Закон и свойства нормального распределения случайной величины. На основе критерия согласия Пирсона построение гистограммы, статистической функции и теоретической кривой и определение согласованности теоретического и статистического распределения.
курсовая работа [894,5 K], добавлен 30.10.2013Случайная выборка значений двух случайных величин для исследования их совместного распределения. Диаграмма рассеяния опытных данных для четырех видов распределения. Вычисление коэффициента корреляции при большом объеме выборок; проверка его значимости.
реферат [811,7 K], добавлен 27.01.2013