Математическая сущность системной теории информации (Системное обобщение формулы Больцмана-Найквиста-Хартли, синтез семантической теории информации Харкевича и теории информации Шеннона)

Алгоритм формирования матрицы абсолютных частот. Формирование матрицы условных и безусловных вероятностей. Взаимосвязь системной меры целесообразности информации со статистикой. Получение матрицы знаний. Реализация модели в аналитической системе "Эйдос".

Рубрика Математика
Вид статья
Язык русский
Дата добавления 26.04.2017
Размер файла 424,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Результат прогнозирования поведения объекта управления, описанного данной системой факторов, представляет собой список его возможных будущих состояний, в котором они расположены в порядке убывания суммарного количества информации о переходе объекта управления в каждое из них.

Сравнение, идентификация и прогнозирование как разложение векторов объектов в ряд по векторам классов (объектный анализ)

Выше были введены неметрические интегральные критерии сходства объекта, описанного массивом-локатором Li с обобщенными образами классов Iij (выражения 40-42).

Для непрерывного случая выражение (42) принимает вид:

Таким образом, выражение (45) представляет собой обобщение интегрального критерия сходства конкретного объекта и обобщенного класса (42) для непрерывного случая в координатной форме.

Отметим, что коэффициенты ряда Фурье (24) по своей математической форме и смыслу сходны с ненормированными коэффициентами корреляции, т.е. по сути скалярными произведениями для непрерывных функций в координатной форме: выражением (45) между разлагаемой в ряд кривой f(x) и функциями Sin и Сos различных частот и амплитуд [1].

где n={1, 2, 3,…} - натуральное число.

Из сравнения выражений (45) и (46) следует вывод о том, что процесс идентификации и прогнозирования (распознавания), реализованный в предложенной математической модели, может рассматриваться как разложение вектора-локатора распознаваемого объекта в ряд по векторам информативностей классов распознавания (которые представляют собой произвольные функции, сформированные при синтезе модели путем многопараметрической типизации на основе эмпирических данных).

Например, результаты идентификации представим на рисунке 2:

Рисунок 2 Пример разложения профиля курсанта усл.№69 в ряд по обобщенным образам классов

Продолжая развивать аналогию с разложением в ряд, данный результат идентификации можно представить в векторной аналитической форме:

или в координатной форме, более удобной для численных расчетов:

Предполагается, что . Таким образом массив-локатор, характеризующий распознаваемый объект, рассматривается как сумма произведений профилей классов на интегральный критерий сходства массива-локатора с этими профилями (т.е. взвешенная суперпозиция или разложение в ряд по профилям классов).

В выражении (47):

I(j) - интегральный критерий сходства массива-локатора, описывающего состояние объекта и j-го класса, рассчитываемый, согласно выражений (42) или (44):

I(i,j) - вектор обобщенного образа j-го класса, координаты которого рассчитываются в соответствии с системным обобщением формулы Харкевича (18):

Примечание: обозначения I(i,j) и Iij, и т.п. эквивалентны. Смысл всех переменных, входящих в выражения (48) и (49) раскрыт выше.

При дальнейшем развитии данной аналогии естественно возникают вопросы: о полноте, избыточности и ортонормированности системы векторов классов как функций, по которым проводится разложение вектора объекта; о сходимости, т.е. вообще возможности и корректности такого разложения.

В общем случае вектор объекта совершенно не обязательно должен разлагаться в ряд по векторам классов таким образом, что сумма ряда во всех точках точно совпадала со значениями исходной функции. Это означает, что система векторов классов может быть неполна по отношению к профилю распознаваемого объекта, и, тем более, всех возможных объектов.

Предлагается считать не разлагаемые в ряд, т.е. плохо распознаваемые объекты, суперпозицией хорошо распознаваемых объектов ("похожих" на те, которые использовались для формирования обобщенных образов классов), и объектов, которые и не должны распознаваться, так как объекты этого типа не встречались в обучающей выборке и не использовались для формирования обобщенных образов классов, а также не относятся к представляемой обучающей выборкой генеральной совокупности.

Нераспознаваемую компоненту можно рассматривать либо как шум, либо считать ее полезным сигналом, несущим ценную информацию о неисследованных объектах интересующей нас предметной области (в зависимости от целей и тезауруса исследователей). Первый вариант не приводит к осложнениям, так как примененный в математической модели алгоритм сравнения векторов объектов и классов, основанный на вычислении нормированной корреляции Пирсона (сумма произведений), является весьма устойчивым к наличию белого шума в идентифицируемом сигнале. Во втором варианте необходимо дообучить систему распознаванию объектов, несущих такую компоненту (в этой возможности и заключается адаптивность модели). Технически этот вопрос решается просто копированием описаний плохо распознавшихся объектов из распознаваемой выборки в обучающую, их идентификацией экспертами и дообучением системы. Кроме того, может быть целесообразным расширить справочник классов распознавания новыми классами, соответствующими этим объектам, и осуществить пересинтез модели.

Однако на практике гораздо чаще наблюдается противоположная ситуация (можно даже сказать, что она типична), когда система векторов избыточна, т.е. в системе классов распознавания есть очень похожие классы (между которыми имеет место высокая корреляция, наблюдаемая в режиме: "кластерно-конструктивный анализ"). Практически это означает, что в системе сформировано несколько практически одинаковых образов с разными наименованиями. Для исследователя это само по себе является очень ценной информацией. Однако если исходить только из потребности разложения распознаваемого объекта в ряд по векторам классов (чтобы определить суперпозицией каких образов он является, т.е. "разложить его на компоненты"), то наличие сильно коррелирующих друг с другом векторов представляется неоправданным, так как просто увеличивает размерности данных, внося в них мало нового по существу. Поэтому возникает задача исключения избыточности системы классов распознавания, т.е. выбора из всей системы классов распознавания такого минимального их набора, в котором профили классов минимально коррелируют друг с другом, т.е. ортогональны в фазовом пространстве признаков. Это условие в теории рядов называется "ортонормируемостью" системы базовых функций, а в факторном анализе связано с идеей выделения "главных компонент".

В предлагаемой математической модели реализованы два варианта выхода из данной ситуации:

1) исключение неформирующихся, расплывчатых классов;

2) объединение почти идентичных по содержанию (дублирующих друг друга) классов.

Однако выбрать нужный вариант и реализовать его, используя соответствующие режимы, пользователь технологии АСК-анализа должен сам. Вся необходимая и достаточная информация для принятия соответствующих решений предоставляется пользователю инструментария АСК-анализа.

Если считать, что функции образов составляют формально-логическую систему, к которой применима теорема Геделя, то можно сформулировать эту теорему для данного случая следующим образом: "Для любой системы базисных функций в принципе всегда может существовать по крайней мере одна такая функция, что она не может быть разложена в ряд по данной системе базисных функций, т.е. функция, которая является ортонормированной ко всей системе базисных функций в целом". Поэтому для адекватного отражения подобных функций в модели необходимо повышение размерности семантического информационного пространства.

Очевидно, не взаимосвязанными друг с другом могут быть только четко оформленные, детерминистские образы, т.е. образы с высокой степенью редукции ("степень сформированности конструкта"). Поэтому в процессе выявления взаимно-ортогональных базисных образов, в первую очередь, будут выброшены аморфные "расплывчатые" образы, которые связаны практически со всеми остальными образами.

В некоторых случаях результат такого процесса представляет интерес, и это делает оправданным его реализацию. Однако можно предположить, что наличие расплывчатых образов в системе является оправданным, так как в этом случае система образов не будет формальной и подчиняющейся теореме Геделя. Следовательно, система распознавания будет более полна в том смысле, что увеличится вероятность идентификации любого объекта, предъявленного ей на распознавание. Конечно, уровень сходства с аморфным образом не может быть столь высоким, как с четко оформленным. Поэтому в этом случае более уместно применить термин "ассоциация" или нечеткая, расплывчатая идентификация, чем "однозначная идентификация".

Итак, можно сделать следующий вывод: допустимость в математической модели СК-анализа не только четко оформленных (детерминистских) образов, но и образов аморфных, нечетких, расплывчатых является важным достоинством данной модели. Это обусловлено тем, что данная модель обеспечивает корректные результаты анализа, идентификации и прогнозирования даже в тех случаях, когда модели идентификации и информационно-поисковые системы детерминистского типа традиционных АСУ практически неработоспособны. В этих условиях данная модель СК-анализа работает как система ассоциативной (нечеткой) идентификации.

Таким образом, в предложенной семантической информационной модели при идентификации и прогнозировании, по сути, осуществляется разложение векторов идентифицируемых объектов по векторам классов распознавания, т.е. осуществляется "объектный анализ" (по аналогии с спектральным, гармоническим или Фурье-анализом), что позволяет рассматривать идентифицируемые объекты как суперпозицию обобщенных образов классов различного типа с различными амплитудами (25). При этом вектора обобщенных образов классов, с математической точки зрения, представляют собой произвольные функции и не обязательно образуют полную и не избыточную (ортонормированную) систему функций.

Для любого объекта всегда существует такая система базисных функций, что вектор объекта может быть представлен в форме линейной суперпозиции (суммы) этих базисных функций с различными амплитудами. Это утверждение, по-видимому, является одним из следствий фундаментальной теоремы А.Н. Колмогорова, доказанной им в 1957 году (О представлении непрерывных функций нескольких переменных в виде суперпозиций непрерывных функций одного переменного и сложения // Докл. АН СССР, Т. 114, С. 953-956, 1957).

Теорема Колмогорова: Любая непрерывная функция от n переменных F(x1, x2,..., xn) может быть представлена в виде:

где gj и hij - непрерывные функции, причем hij не зависят от функции F.

Эта теорема означает, что для реализации функций многих переменных достаточно операций суммирования и композиции функций одной переменной. Удивительно, что в этом представлении лишь функции gj зависят от представляемой функции F, а функции hij универсальны. Необходимо отметить, что теорема Колмогорова является обобщением теоремы В.И. Арнольда (1957), которая дает решение 13-й проблемы Гильберта.

К сожалению, определение вида функций hij и gj для данной функции F представляет собой математическую проблему, для которой пока не найдено общего строгого решения. матрица модель вероятность эйдос

В данной работе предлагается рассматривать предлагаемую семантическую информационную модель как один из вариантов решения этой проблемы. В этом контексте функция F интерпретируется как образ идентифицируемого объекта, функция hij - образ j-го класса, а функция gj - мера сходства образа объекта с образом класса.

Таким образом В статье кратко описана математическая сущность предложенной автором системной теории информации СТИ), являющейся математической моделью системно-когнитивного анализа (СК-анализ) и реализуемой в его программном инструментарии - универсальной аналитической системе "Эйдос" [20, 21].

Литература

1. Lutsenko E.V. Conceptual principles of the system (emergent) information theory & its application for the cognitive modelling of the active objects (entities). 2002 IEEE International Conference on Artificial Intelligence System (ICAIS 2002).Computer society, IEEE, Los Alamos, California, Washington-Brussels-Tokyo, p. 268-269. http://csdl2.computer.org/comp/proceedings/icais/2002/1733/00/17330268.pdf.

2. Луценко Е. В. Автоматизированный системно-когнитивный анализ в управлении активными объектами (системная теория информации и ее применение в исследовании экономических, социально-психологических, технологических и организационно-технических систем): Монография (научное издание). Краснодар: КубГАУ. 2002. 605 с.

3. Луценко Е.В. Автоматизированная система распознавания образов, математическая модель и опыт применения // В.И. Вернадский и современность (к 130-летию со дня рождения): Тезисы научно-практической конференции. Краснодар: КНА, 1993. С. 37-42.

4. Луценко Е.В. Интеллектуальные информационные системы: Учебное пособие для студентов специальности: 351400 "Прикладная информатика (по отраслям)". Краснодар: КубГАУ. 2004. 633 с.

5. Луценко Е.В. Интеллектуальные информационные системы: Учебное пособие с грифами Министерства сельского хозяйства РФ и УМО для студентов специальности "Прикладная информатика (по областям)" и другим экономическим специальностям. 2-е изд., перераб. и доп. Краснодар: КубГАУ, 2006. 615 с.

6. Луценко Е.В. Теоретические основы и технология адаптивного семантического анализа в поддержке принятия решений (на примере универсальной автоматизированной системы распознавания образов "ЭЙДОС-5.1"). Монография (научное издание). Краснодар: КЮИ МВД РФ, 1996. 280 с.

7. Луценко Е.В. АСК-анализ как метод выявления когнитивных функциональных зависимостей в многомерных зашумленных фрагментированных данных / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2005. №03(11). Режим доступа: http://ej.kubagro.ru/2005/03/pdf/19.pdf.

8. Луценко Е.В. Виртуализация общества как основной информационный аспект глобализации / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2005. №01(9). Режим доступа: http://ej.kubagro.ru/2005/01/pdf/02.pdf.

9. Луценко Е.В. Количественные меры возрастания эмерджентности в процессе эволюции систем (в рамках системной теории информации) / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2006. №05(21). Шифр Информрегистра: 0420600012\0089. Режим доступа: http://ej.kubagro.ru/2006/05/pdf/31.pdf.

10. Луценко Е.В. Критерии реальности и принцип эквивалентности виртуальной и "истинной" реальности / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2004. №06(8). Режим доступа: http://ej.kubagro.ru/2004/06/pdf/10.pdf.

11. Луценко Е.В. Математический метод СК-анализа в свете идей интервальной бутстрепной робастной статистики объектов нечисловой природы / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2004. №01(3). Режим доступа: http://ej.kubagro.ru/2004/01/pdf/13.pdf.

12. Луценко Е.В. Программная идея системного обобщения математики и ее применение для создания системной теории информации / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2008. №02(36). Шифр Информрегистра: 0420800012\0016. Режим доступа: http://ej.kubagro.ru/2008/02/pdf/11.pdf.

13. Луценко Е.В. Неформальная постановка и обсуждение задач, возникающих при системном обобщении теории множеств на основе системной теории информации (Часть 1-я: задачи 1-3) / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2008. №03(37). Шифр Информрегистра: 0420800012\0031. Режим доступа: http://ej.kubagro.ru/2008/03/pdf/12.pdf.

14. Луценко Е.В. Неформальная постановка и обсуждение задач, возникающих при системном обобщении теории множеств на основе системной теории информации (Часть 2-я: задачи 4-9) / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2008. №04(38). Шифр Информрегистра: 0420800012\0049. Режим доступа: http://ej.kubagro.ru/2008/04/pdf/03.pdf.

15. Луценко Е.В. Семантическая информационная модель СК-анализа / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2008. №02(36). Шифр Информрегистра: 0420800012\0015. Режим доступа: http://ej.kubagro.ru/2008/02/pdf/12.pdf.

16. Луценко Е.В. Системная теория информации и нелокальные интерпретируемые нейронные сети прямого счета / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2003. №01(1). Режим доступа: http://ej.kubagro.ru/2003/01/pdf/11.pdf.

17. Луценко Е.В. Системно-когнитивный анализ как развитие концепции смысла Шенка - Абельсона / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2004. №03(5). Режим доступа: http://ej.kubagro.ru/2004/03/pdf/04.pdf.

18. Луценко Е.В. Универсальный информационный вариационный принцип развития систем / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2008. №07(41). Режим доступа: http://ej.kubagro.ru/2008/07/pdf/10.pdf.

19. Луценко Е.В. Численный расчет эластичности объектов информационной безопасности на основе системной теории информации / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2003. №01(1). Режим доступа: http://ej.kubagro.ru/2003/01/pdf/05.pdf.

20. Пат. № 2003610986 РФ. Универсальная когнитивная аналитическая система "ЭЙДОС" / Е.В.Луценко (Россия); Заяв. № 2003610510 РФ. Опубл. от 22.04.2003. 50 с.

21. Пат. № 940217. РФ. Универсальная автоматизированная система распознавания образов "ЭЙДОС". /Е.В.Луценко (Россия); Заяв. № 940103. Опубл. 11.05.94. 50 с.

22. Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ: Учебное пособие. М.: Высшая школа, 1997. 389 с.

Размещено на Allbest.ru


Подобные документы

  • Понятие обратной матрицы. Пошаговое определение обратной матрицы: проверка существования квадратной и обратной матрицы, расчет определителя и алгебраического дополнения, получение единичной матрицы. Пример расчета обратной матрицы согласно алгоритма.

    презентация [54,8 K], добавлен 21.09.2013

  • Понятие матрицы и ее основные элементы. Пример нахождения ее ранга путем приведения к ступенчатому виду. Описание действий над матрицами. Разбор умножения их на примере. Особенности алгебраического дополнения. Алгоритм определения обратной матрицы.

    презентация [617,0 K], добавлен 15.09.2014

  • Понятие, типы и алгебра матриц. Определители квадратной матрицы и их свойства, теоремы Лапласа и аннулирования. Понятие обратной матрицы и ее единственность, алгоритм построения и свойства. Определение единичной матрицы только для квадратных матриц.

    реферат [296,6 K], добавлен 12.06.2010

  • Понятие и типы матриц. Определители (детерминанты) квадратной матрицы и их свойства. Алгебраические действия над матрицами. Теоремы Лапласа и аннулирования. Понятие и свойства обратной матрицы, алгоритм ее построения. Единственность обратной матрицы.

    курс лекций [336,5 K], добавлен 27.05.2010

  • Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.

    лекция [30,2 K], добавлен 14.12.2010

  • Понятие матрицы достижимости и связности. Операция удаления вершины из графа. Алгоритм выделения компонент сильной связности. Разработка и листинг программы на языке Turbo Pascal, осуществляющей вычисление матрицы достижимости по заданному алгоритму.

    курсовая работа [584,3 K], добавлен 26.04.2011

  • Понятие матрицы, прямоугольная матрица размера m x n - совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Численная характеристика квадратной матрицы - ее определитель. Действия над матрицами, ранг матрицы.

    реферат [87,2 K], добавлен 01.08.2009

  • Система передачи информации, ее количество и логарифмическая мера. Ансамбль сообщений, виды единиц информации. Свойства количества информации. Энтропия как содержательность и мера неопределенности информации, ее свойства. Понятие избыточности сообщений.

    реферат [35,1 K], добавлен 01.08.2009

  • Линейные операции над матрицами. Умножение и вычисление произведения матриц. Приведение матрицы к ступенчатому виду и вычисление ранга матрицы. Вычисление обратной матрицы и определителя матрицы, а также решение систем линейных уравнений методом Гаусса.

    учебное пособие [658,4 K], добавлен 26.01.2009

  • Понятие матрицы, ее ранга, минора, использование при действиях с векторами и изучении систем линейных уравнений. Квадратная и прямоугольная матрица. Элементарные преобразования матрицы. Умножение матрицы на число. Класс диагональных матриц, определители.

    реферат [102,8 K], добавлен 05.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.