Дискретне формування еквідистант до моделей замкнутих кривих апаратом числових послідовностей

Алгоритм формування дискретних моделей внутрішніх та зовнішніх еквідистант до замкнутих кривих з використанням апарату числових послідовностей. Визначення обмежень на параметри еквідистант для унеможливлення утворення на них петель та самоперетинів.

Рубрика Математика
Предмет Геометричне моделювання
Вид статья
Язык украинский
Прислал(а) incognito
Дата добавления 25.10.2016
Размер файла 371,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Сутність гармонічної, квадратичної, логарифмічної прогресій. Аналіз методів доведень алгебраїчних нерівностей за допомогою прогресій. Розв'язання задач на дослідження властивостей середнього степеневого для заданих числових послідовностей та нерівностей.

    курсовая работа [396,9 K], добавлен 26.04.2012

  • Загальні поняття та основні властивості числових рядів. Додаткові ознаки збіжності числових рядів: ознака Куммера і Раабе, Бертрана та Гаусса, ознака Діріхле, їх порівняння та практичність застосування. Мала чутливість ознаки збіжності Даламбера.

    курсовая работа [509,5 K], добавлен 29.02.2012

  • Методика розрахунку невизначених інтегралів. Обчислення площі фігури, обмеженої вказаними лініями, та формування відповідного рисунку. Загальний та частинний розв’язок диференціального рівняння першого порядку. Дослідження на збіжність числових рядів.

    контрольная работа [490,5 K], добавлен 19.01.2015

  • Зведення до канонічного вигляду кривих і поверхонь другого порядку методом ортогональних перетворень, побудова їх за заданими канонічними рівняннями. Визначення лінійних операторів та квадратичних форм. Власні вектори та значення лінійного оператора.

    курсовая работа [1,9 M], добавлен 13.11.2012

  • Аксіоматика і основні метричні формули псевдоевклідової площини. Канонічні рівняння кривих другого порядку (параболи, еліпса, гіперболи). Елементи загальної теорії кривих другого порядку псевдоевклідової площини. Перетворення координат рівняння.

    презентация [787,6 K], добавлен 17.01.2015

  • Застосування методів математичного аналізу для знаходження центрів мас кривих, плоских фігур та поверхонь з використанням інтегральних числень функцій однієї та кількох змінних. Поняття визначеного, подвійного, криволінійного та поверхневого інтегралів.

    курсовая работа [515,3 K], добавлен 29.06.2011

  • Спектральний розклад кореляційної функції та представлення стаціонарних (в широкому сенсі) послідовностей. Екстраполяція, інтерполяція та фільтрація. Регулярні послідовності та напрямки їх аналізу. Перевірка гіпотези про двоїстість та ортогоналізацію.

    контрольная работа [986,8 K], добавлен 20.06.2015

  • Сутність, особливості та історична поява чисел "пі" та "е". Доведення ірраціональності та трансцендентності чисел "пі" та "е". Методи наближеного обчислення чисел "пі" та "е" за допомогою числових рядів та розкладу в нескінченні ланцюгові дроби.

    курсовая работа [584,5 K], добавлен 18.07.2010

  • Признаки некоторых четырехугольников. Реализация моделей геометрических ситуаций в средах динамической геометрии. Особенности динамической среды "Живая геометрия", особенности построения в ней моделей параллелограмма, ромба, прямоугольника и квадрата.

    курсовая работа [862,0 K], добавлен 28.05.2013

  • Ознайомлення із символікою та апаратом логіки висловлень. Сутність алгебри Жегалкіна. Дослідження питань несуперечності, повноти та незалежності логічних та спеціальних аксіом числення предикатів. Визначення поняття та характерних рис алгоритмів.

    курс лекций [538,2 K], добавлен 02.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.