Точные неравенства типа Джексона в весовом пространстве L2,p(R2)
Получение точных неравенств типа Джексона на классах дифференцируемых функций двух переменных. Исследование оператора обобщенного сдвига в метрике пространства L2,p(R2) с весом Чебышева-Эрмита. Ортонормированная система алгебраических полиномов Эрмита.
Рубрика | Математика |
Предмет | Математика |
Вид | статья |
Язык | русский |
Прислал(а) | С.Б. Вакарчук |
Дата добавления | 30.10.2016 |
Размер файла | 413,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основные формулы и алгебраические свойства. Применение многочленов Чебышева-Эрмита в квантовой механике. Определение потенциальной энергии. Ортонормированный многочлен Чебышева-Эрмита. Уравнение Шрёдингера в одномерном случае. Коэффициенты разложения.
курсовая работа [459,1 K], добавлен 21.11.2014Вспомогательные леммы. Теоремы Джексона для к-го обобщенного модуля гладкости. Обобщенное неравенство Минковского. Тригонометрический полином. Вычисление модулей гладкости для некоторых функций. Понятие прямой и обратной теоремы теории приближений.
курсовая работа [3,0 M], добавлен 26.05.2013Понятие неравенства, его сущность и особенности, классификация и разновидности. Основные свойства числовых неравенств. Методика графического решения неравенств второй степени. Системы неравенств с двумя переменными, с переменной под знаком модуля.
реферат [118,9 K], добавлен 31.01.2009Действие оператора точечной группы в двух- и трехмерном пространстве. Определение его порядка по матрице Система эквивалентных точек. Возможные порядки осей симметрии в кристаллографическом пространстве. Геометрическая интерпретация сложения операторов.
презентация [107,4 K], добавлен 23.09.2013Теоретические сведения о числовых неравенствах и их свойствах. Линейные неравенства с одной переменной. Квадратные и рациональные неравенства. Особенности решения различных неравенств, содержащих знак модуля. Нестандартные методы решения неравенств.
реферат [2,0 M], добавлен 18.01.2011Система линейных неравенств, определяющих треугольник. Доказательство базиса четырехмерного пространства и определение координат вектора. Исследование функций на периодичность, монотонность и экстремум. Площади фигуры, ограниченной графиками функций.
контрольная работа [174,5 K], добавлен 26.01.2010Квантовый гармонический осциллятор. Уравнение Шредингера и методы его решения. Решение уравнения через полиномы Эрмита. Особенности волновых функций. Метод обобщенных степеней Берса. ОСБ и их графики для конкретного случая. Анализ полученных функций.
реферат [430,2 K], добавлен 10.03.2013Примеры неравенств, доказываемых техникой одномонотонных последовательностей. Обоснование данного метода для случая с произвольным числом переменных. Доказательство неравенств с минимальным числом переменных. Сравнение метода с доказательством Коши.
реферат [132,8 K], добавлен 05.02.2011Задача теории приближений - нахождение связей между структурными свойствами функции и порядком стремления к нулю последовательности ее наилучших приближений тригонометрическими или алгебраическими полиномами. Вычисление модулей гладкости для функций.
дипломная работа [4,4 M], добавлен 11.06.2013Преобразование коэффициентов полиномов Чебышева. Функции, применяемые в численном анализе. Интерполяция многочленами, метод аппроксимации - сплайн-аппроксимация, ее отличия от полиномиальной аппроксимации Лагранжем и Ньютоном. Метод наименьших квадратов.
реферат [21,5 K], добавлен 27.01.2011