Основные понятия теории вероятностей

Предмет, определение, понятия и основные теоремы теории вероятности. Формулы комбинаторики, Байеса, Бернулли и полной вероятности. Классификация событий и операции над ними. Определение вероятности случайного события и повторных независимых испытаний.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 01.04.2016
Размер файла 334,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кроме рассмотренных величин используются также так называемые абсолютные моменты:

Абсолютный начальный момент: .

Абсолютный центральный момент: .

Абсолютный центральный момент первого порядка называется средним арифметическим отклонением.

16. Предмет и задачи математической статистики

Математическая статистика - это наука, занимающаяся методами обработки экспериментальных данных. Любая наука решает в порядке возрастания сложности и важности следующие задачи:

1) описание явления;

2) анализ и прогноз;

3) поиск оптимального решения.

Такого рода задачи решает и математическая статистика:

1) систематизировать полученный статистический материал;

2) на основании полученных экспериментальных данных оценить интересующие нас числовые характеристики наблюдаемой случайной величины;

3) определить число опытов, достаточное для получения достоверных результатов при минимальных ошибках измерения.

Одной из задач третьего типа является задача проверки правдоподобия гипотез. Она может быть сформулирована следующим образом: имеется совокупность опытных данных, относящихся к одной или нескольким случайным величинам. Необходимо определить, противоречат ли эти данные той или иной гипотезе, например, гипотезе о том, что исследуемая случайная величина распределена по определенному закону, или две случайные величины некоррелированы (т.е. не связаны между собой) и т.д. В результате проверки правдоподобия гипотезы она либо отбрасывается, как противоречащая опытным данным, либо принимается, как приемлемая.

Таким образом, математическая статистика помогает экспериментатору лучше разобраться в полученных опытных данных, оценить, значимы или нет определенные наблюденные факты, принять или отбросить те или иные гипотезы о природе рассматриваемого явления

Математическая статистика - раздел математики, в котором изучаются методы сбора, систематизации и обработки результатов наблюдений массовых случайных явлений для выявления существующих закономерностей.

Математическая статистика тесно связана с теорией вероятностей. Обе эти математические дисциплины изучают массовые случайные явления. Связующим звеном между ними являются предельные теоремы теории вероятностей. При этом теория вероятностей выводит из математической модели свойства реального процесса, а математическая статистика устанавливает свойства математической модели, исходя из данных наблюдений (говорят "из статистических данных").

Предметом математической статистики является изучение случайных величин (или случайных событий, процессов) по результатам наблюдений. Полученные в результате наблюдения (опыта, эксперимента) данные сначала надо каким-либо образом обработать: упорядочить, представить в удобном для обозрения и анализа виде. Это первая задача.

Затем, это уже вторая задача, оценить, хотя бы приблизительно, интересующие нас характеристики наблюдаемой случайной величины. Например, дать оценку неизвестной вероятности события, оценку неизвестной функции распределения, оценку математического ожидания, оценку дисперсии случайной величины, оценку параметров распределения, вид которого неизвестен, и т.д.

Следующей, назовем ее условно третьей, задачей является проверка статистических гипотез, т.е. решение вопроса согласования результатов оценивания с опытными данными.

Одной из важнейших задач математической статистики является разработка методов, позволяющих по результатам обследования выборки делать обоснованные выводы о распределении признака изучаемых объектов по всей совокупности.

Математическую статистику подразделяют на теоретическую и прикладную.

Теоретическая статистика доказывает научность и правильность самой статистики.

Теоретическая математическая статистика - наука, изучающая методы раскрытия закономерностей, свойственных большим совокупностям однородных объектов, на основании их выборочного обследования.

Этим разделом статистики занимаются математики, и они любят с помощь своих теоретических математических доказательств убеждать нас в том, что статистика сама по себе научна и ей можно доверять. Беда в том, что эти доказательства способны понять только другие математики, а обычным людям, которым нужно пользоваться математической статистикой эти доказательства всё равно не доступны, да и совершенно не нужны!

Вывод: Если вы не математик, то не тратьте зря свои силы на понимание теоретических выкладок по поводу математической статистики. Изучайте собственно статистические методы, а не их математические обоснования.

Прикладная статистика учит пользователей работать с любыми данными и получать обобщённые результаты. Неважно, какие именно это данные, важно, какое количество этих данных находится в вашем распоряжении. Кроме того, прикладная статистика подскажет нам, насколько можно верить в то, что полученные результаты отражают действительное положение дел.

Для разных дисциплин в прикладной статистике используют различные наборы конкретных методов. Поэтому различают следующие разделы прикладной статистики: биологическая, психологическая, экономическая и другие. Они отличаются друг от друга комплектацией примеров и приемов, а также излюбленными методами вычислений.

Можно привести следующий пример различий между применением прикладной статистики для разных дисциплин. Так, статистическое изучение режима турбулентных водных потоков производится на основе теории стационарных случайных процессов. Однако применение той же теории к анализу экономических временных рядов может привести к грубым ошибкам ввиду того, что допущение того, что распределение вероятностей сохраняется неизменным в этом случае, как правило, совершенно неприемлемо. Следовательно, для этих разных дисциплин потребуются разные статистические методы.

Итак, математическую статистику должен применять в своих исследованиях любой современный учёный. Даже тот учёный, который работает в направлениях, которые весьма далеки от математики. И он должен уметь применять прикладную статискику к своим данным, даже не зная её.

17. Вариационные ряды распределения

Статистические ряды распределения представляют собой упорядоченное расположение единиц изучаемой совокупности на группы по группировочному признаку.

Различают атрибутивные и вариационные ряды распределения.

Атрибутивный - это ряд распределения, построенный по качественным признакам. Он характеризует состав совокупности по различным существенным признакам.

По количественному признаку строится вариационный ряд распределения. Он состоит из частоты (численности) отдельных вариантов или каждой группы вариационного ряда. Данные числа показывают, насколько часто встречаются различные варианты (значения признака) в ряду распределения. Сумма всех частот определяет численность всей совокупности.

Численности групп выражаются в абсолютных и относительных величинах . В абсолютных величинах выражается числом единиц совокупности в каждой выделенной группе, а в относительных величинах - в виде долей, удельных весов, представленных в процентах к итогу.

В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды распределения. В дискретном вариационном ряде распределения группы составлены по признаку, изменяющемуся дискретно и принимающему только целые значения.

В интервальном вариационном ряде распределения группиро-вочный признак, составляющий основание группировки, может принимать в определенном интервале любые значения.

Вариационные ряды состоят из двух элементов: частоты и варианты.

Вариантой называют отдельное значение варьируемого признака, которое он принимает в ряду распределения.

Частота - это численность отдельных вариант или каждой группы вариационного ряда. Если частоты выражены в долях единицы или в процентах к итогу, то их называют частостями.

Правила и принципы построения интервальных рядов распределения строятся по аналогичным правилам и принципам построения статистических группировок. Если интервальный вариационный ряд распределения построен с равными интервалами, частоты позволяют судить о степени заполнения интервала единицами совокупности. Для проведения сравнительного анализа заполненности интервалов определяют показатель, который будет характеризовать плотность распределения.

Плотность распределения - это отношение числа единиц совокупности к ширине интервала.

Вариационными называют ряды распределения, построенные по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот. Вариантами считаются отдельные значения признака, которые он принимает в вариационном ряду, т е. конкретное значение варьирующего признака. Частоты - это численности отдельных вариантов или каждой группы вариационного ряда, т. е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, ее объем.

Частостями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1 или 100%.

В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды.

Как известно, вариация количественных признаков может быть дискретной (прерывной) или непрерывной.

В случае дискретной вариации величина количественного признака принимает только целые значения. Следовательно, дискретный вариационный рядхарактеризует распределение единиц совокупности по дискретному признаку. Примером дискретного вариационного ряда является распределение семей по числу комнат в отдельных квартирах, приведенное в табл. 3.12.

В первой колонке таблицы представлены варианты дискретного вариационного ряда, во второй - помещены частоты вариационного ряда, а в третьей - показаны частости.

В случае непрерывной вариации величина признака у единиц совокупности может принимать в определенных пределах любые значения, отличающиеся друг от друга на сколько угодно малую величину. Построение интервальных вариационныхрядов целесообразно прежде всего при непрерывной вариации признака, а также если дискретная вариация проявляется в широких пределах, т. е. число вариантов дискретного признака достаточно велико. В табл. 3.3 представлен интервальный вариационный ряд.

Графическое изображение рядов распределения

Анализ рядов распределения можно проводить на основе их графического изображения. Линейчатые и круговые диаграммы строятся для отображения структуры совокупности.

Применяются вместе с диаграммами и такие линии, как полигон, кумулята, огива, гистограмма. При изображении дискретных вариационных рядов используется полигон.

Полигон - ломаная кривая, строится на основе прямоугольной системы координат, когда по оси Х откладываются значения признака, а по оси У - частоты.

Гладкая кривая, соединяющая точки - это эмпирическая плотность распределения.

Кумулята - ломаная кривая, строящаяся на основе прямоугольной системы координат, когда по оси Х откладываются значения признака, а по оси У - накопленные частоты.

Для дискретных рядов на оси откладываются сами значения признака, а для интервальных - середины интервалов.

На основе гистограмм можно строить диаграммы накопленных частот с последующим построением интегральной эмпирической функции распределения.

18. Гистограммы и полигон частот

Для наглядности строят различные графики статистического распределения.

По данным дискретного вариационного ряда строят полигон частот или относительных частот.

Полигоном частот называют ломанную, отрезки которой соединяют точки (x1; n1), (x2; n2), ..., (xk; nk). Для построения полигона частот на оси абсцисс откладывают варианты xi, а на оси ординат - соответствующие им частоты ni. Точки ( xi; ni) соединяют отрезками прямых и получают полигон частот (Рис. 1).

Полигоном относительных частот называют ломанную, отрезки которой соединяют точки (x1; W1), (x2; W2), ..., (xk; Wk). Для построения полигона относительных частот на оси абсцисс откладывают варианты xi, а на оси ординат - соответствующие им относительные частоты Wi. Точки ( xi; Wi) соединяют отрезками прямых и получают полигон относительных частот.

В случае непрерывного признака целесообразно строить гистограмму.

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высоты равны отношению ni / h (плотность частоты).

Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии ni / h.

Площадь i - го частичного прямоугольника равна hni / h = ni - сумме частот вариант i - го интервала; следовательно, площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высоты равны отношению Wi / h (плотность относительной частоты).

Для построения гистограммы относительных частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии Wi / h (Рис. 2).

Площадь i - го частичного прямоугольника равна hWi / h = Wi - относительной частоте вариант попавших в i - й интервал. Следовательно, площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.

Рис. 1. Полигон частот

Рис. 2. Гистограмма относительных частот

19. Статистические оценки параметров совокупности

Определение статистической оценки. Точечные статистические оценки: смещенные и несмещенные, эффективные и состоятельные. Интервальные статистические оценки. Точность и надежность оценки; определение доверительного интервала; построение доверительных интервалов для средней при известном и неизвестном среднеквадратическом отклонении.

Определение статистической оценки

Пусть требуется изучить количественный признак генеральной совокупности. Допустим, что из теоретических соображений удалось установить, какое именно распределение имеет признак. Возникает задача оценки параметров, которыми определяется это распределение. Например, если известно, что изучаемый признак распределен в генеральной совокупности по нормальному закону, то необходимо оценить математическое ожидание и среднеквадратическое отклонение, так как эти два параметра полностью определяют нормальное распределение. Если имеются основания считать, что признак имеет распределение Пуассона, то необходимо оценить параметр л, которым это распределение определяется. Обычно имеются лишь данные выборки, полученные в результате n наблюдений: x1,x2,…,xn. Через эти данные и выражают оцениваемый параметр. Рассматривая x1,x2,…,xn как значения независимых случайных величин X1,X2,…,Xn можно сказать, что найти статистическую оценку неизвестного параметра теоретического распределения означает найти функцию от наблюдаемых случайных величин, которая и дает приближенное значение оцениваемого параметра.

Размещено на Allbest.ru


Подобные документы

  • Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.

    реферат [175,1 K], добавлен 22.12.2013

  • Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.

    практическая работа [55,0 K], добавлен 23.08.2015

  • Показатели безотказности как показатели надежности невосстанавливаемых объектов. Классическое и геометрическое определение вероятности. Частота случайного события и "статистическое определение" вероятности. Теоремы сложения и умножения вероятностей.

    курсовая работа [328,1 K], добавлен 18.11.2011

  • Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.

    шпаргалка [777,8 K], добавлен 24.12.2010

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Применение классического определения вероятности в решении экономических задач. Определение вероятности попадания на сборку бракованных и небракованных деталей. Вычисление вероятности и выборочного значения статистики при помощи формулы Бернулли.

    контрольная работа [309,4 K], добавлен 18.09.2010

  • Определение вероятности случайного события, с использованием формулы классической вероятности, схемы Бернулли. Составление закона распределения случайной величины. Гипотеза о виде закона распределения и ее проверка с помощью критерия хи-квадрата Пирсона.

    контрольная работа [114,3 K], добавлен 11.02.2014

  • Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.

    шпаргалка [945,2 K], добавлен 18.06.2012

  • Случайные события, их классификация. Свойство статистической устойчивости относительной частоты события. Предельные теоремы в схеме Бернулли. Аксиоматическое и геометрическое определение вероятности. Локальная и интегральная теоремы Муавра-Лапласа.

    реферат [1,4 M], добавлен 18.02.2014

  • Определение вероятности появления поломок. Расчет вероятности успеха, согласно последовательности испытаний по схеме Бернулли. Нахождение вероятности определенных событий по формуле гипергеометрической вероятности. Расчет дискретной случайной величины.

    контрольная работа [69,3 K], добавлен 17.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.