Застосування матричних задач у теорії груп та алгебричній геометрії
Опис скінченних унітарно ручних і унітарно диких скінченних груп. 2-класи спряжених елементів груп унітрикутних матриць над полями. Класифікація модулярних унітрикутних зображень циклічної групи порядку два. Канонічні представники спряжених елементів.
| Рубрика | Математика |
| Предмет | Алгебра і теорія чисел |
| Вид | автореферат |
| Язык | украинский |
| Прислал(а) | incognito |
| Дата добавления | 28.08.2015 |
| Размер файла | 159,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Класифікація кінцевих простих неабелевих груп. Одержання факторизацій конкретних простих неабелевих груп та простих груп лієвського типу малого лієвського рангу. Ізометрії, проективні перетворення. Структурні теореми, порядки симплектичних груп.
дипломная работа [263,0 K], добавлен 26.12.2010Множина як визначена сукупність елементів чи об’єктів. Списковий спосіб подання множини. Множина, кількість елементів якої скінченна (скінченна множина). Виведення декартового добутку з кожної заданої комбінації. Алгоритм рішення та реалізація програми.
задача [112,0 K], добавлен 23.06.2010Основна теорема про епіморфізм груп. Означення і властивості гомоморфного та ізоморфного відображення кілець, полів. Ізоморфізм циклічних груп. Поняття кільця, поля та їх основні властивості. Вправи на гомоморфізм та ізоморфізм груп, кілець і полів.
дипломная работа [859,1 K], добавлен 19.09.2012Історія виникнення лабіринту. Лабіринт крітського царя Міноса - одне із семи чудес світу. Перші здогади "Правило руки". Лабіринти і замкнені криві, розв'язування різних лабіринтних задач, застосування елементів теорії графів і теорії ймовірностей.
реферат [7,3 M], добавлен 29.09.2009Елементи загальної теорії багатомірних просторів, аксіоматика Вейля. Геометрія k-площин в афінному і евклідовому просторах: паралелепіпеди, симплекси, кулі. Застосування багатомірної геометрії: простір-час класичної механіки і теорії відносності.
дипломная работа [1,0 M], добавлен 28.01.2011Вивчення властивостей підгрупи Фиттинга. Умова існування доповнень до окремих підгруп. Визначення нильпотентної довжини розв'язної групи. Доведення ізоморфності кінцевої нерозв'язної групи з нильпотентними додаваннями до непонадрозв'язних підгруп.
дипломная работа [198,6 K], добавлен 17.01.2011Аксіоматика і основні метричні формули псевдоевклідової площини. Канонічні рівняння кривих другого порядку (параболи, еліпса, гіперболи). Елементи загальної теорії кривих другого порядку псевдоевклідової площини. Перетворення координат рівняння.
презентация [787,6 K], добавлен 17.01.2015Перестановка як перевпорядкованість наборів елементів, об’єктів або функція, що задає таку перевпорядкованість. Всі можливі варіанти перестановок елементів множини за умови наявності трьох елементів за умови, що жоден елемент не залишається на місці.
задача [222,1 K], добавлен 23.06.2010Суть та значення аксіоматичної побудови геометрії. Аксіоматика Д. Гільберта евклідової геометрії. Аксіоми сполучення, порядку, конгруентності, неперервності та паралельності. Характеристика різних аксіоматик. Векторна аксіоматика еклідової геометрії.
курсовая работа [179,9 K], добавлен 17.03.2012Введення поняття інтеграла Стільєса та його розробка. Визначення проблеми моментів. Загальні умови та класи випадків існування інтеграла Стільєса. Теорема про середній. Застосування інтеграла Стільєса в теорії ймовірностей та у квантовій механіці.
дипломная работа [797,1 K], добавлен 25.02.2011


