Множество задач на одном рисунке
Создание множества задач к одному рисунку. Построение сечения пирамиды плоскостью, проходящей через середину ребра, перпендикулярно прямой. Нахождение отношения объемов конусов, площади боковой поверхности, расстояния секущей плоскости и площади круга.
Рубрика | Математика |
Вид | практическая работа |
Язык | русский |
Дата добавления | 11.05.2015 |
Размер файла | 940,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Определение пирамиды как геометрической фигуры, ее виды. Проекция треугольной пирамиды. Основные свойства полной и усеченной пирамиды, нахождение площади и объема, плоские сечения. Пример построения сечения пирамиды с плоскостью по заданным параметрам.
практическая работа [2,2 M], добавлен 16.06.2009Обзор понятия геометрической фигуры призмы, ее основания и боковых граней. Построение отрезков, нахождение высоты прямой и наклонной призмы. Расчет полной и боковой площадей поверхности фигуры. Изучение теоремы о площади боковой поверхности прямой призмы.
презентация [82,8 K], добавлен 17.05.2012Основные элементы пирамиды. Понятие правильной пирамиды. Нахождение площади основания, высоты пирамиды и высоты боковой грани, вписанной и описанной окружностей и точки пересечения диагоналей. Треугольная, четырехугольная и шестиугольная пирамиды.
презентация [561,8 K], добавлен 19.09.2011Способы задания прямой на плоскости. Уравнение с угловым коэффициентом. Рассмотрение частных случаев. Уравнение прямой, проходящей через заданную точку в заданном направлении. Построение графика прямой, проходящей через две точки. Рассмотрение примера.
презентация [104,9 K], добавлен 21.09.2013Геометрическая фигура, образованная тремя фигурами, которые соединяют три не лежащие на одной прямой точки. Основные формулы площади треугольника. Решение задач на нахождение площади треугольника через две его стороны и высоту, проведенную к основанию.
презентация [240,0 K], добавлен 21.04.2015Уравнение плоскости, проходящей через точку параллельно горизонтальной, фронтальной и профильной прямым. Угол в точке пересечения прямой с плоскостью. Условия параллельности и перпендикулярности прямой и плоскости. Метод прямоугольного треугольника.
курсовая работа [647,0 K], добавлен 14.11.2014Основные свойства, прямой и наклонный виды призмы. Площадь поверхности призмы и площадь ее боковой поверхности: доказательство теоремы. Сечение призмы плоскостью. Свойства правильной призмы, особенности ее сечения и симметрия. Оси и плоскости симметрии.
презентация [147,7 K], добавлен 20.12.2010Написание уравнения прямой, проходящей через определенную точку и удаленной от начала координат на заданное расстояние. Расчет длины высот параллелограмма. Построение плоскости и прямой, определение точки пересечения прямой и плоскости и угла между ними.
контрольная работа [376,1 K], добавлен 16.06.2012Определение уравнения линии, уравнения и длины высоты, площади треугольника. Расчёт длины ребра, уравнения плоскости и объема пирамиды. Уравнение линии в прямоугольной декартовой системе координат. Тригонометрическая форма записи комплексных чисел.
контрольная работа [489,4 K], добавлен 25.03.2014Отрезки, соединяющие вершину пирамиды с вершинами основания. Поверхность пирамиды, основание и боковые грани. Определение высоты пирамиды. Произвольные, усеченные и правильные пирамиды. Нахождение боковой поверхности правильной пирамиды и ее объема.
презентация [726,6 K], добавлен 08.06.2011Основные виды сечения конуса. Сечение, образованное плоскостью, проходящей через ось конуса (осевое) и через его вершину (треугольник). Образование сечения плоскостью, параллельной (парабола), перпендикулярной (круг) и не перпендикулярной (эллипс) оси.
презентация [137,9 K], добавлен 12.12.2013Нахождение координат треугольника по заданным вершинам. Условия перпендикулярности, параллельности и совпадения прямых. Уравнение плоскости, проходящей через точку. Составление канонических уравнений прямой, кривой второго порядка и поверхности.
контрольная работа [259,7 K], добавлен 28.03.2014Уравнение плоскости, проходящей через точку и перпендикулярной заданному вектору, плоскости в отрезках, проходящей через три точки. Общее уравнение плоскости. Условие параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.
презентация [106,9 K], добавлен 21.09.2013Понятие пирамиды, ее математическое обоснование, отражение в науке и искусстве. Принцип Кавальери. Сечение пирамиды как многоугольника, который образуется при пересечении пирамиды с секущей плоскостью. Правильная пирамида и ее основополагающие свойства.
презентация [1,5 M], добавлен 18.04.2014Уравнение прямой, проходящей через две заданные точки. Вычисление площади ромба. Разложение квадратного трехчлена на линейные множители. Нахождение производной функции и асимптот графика. Правила дифференцирования частного произведения и сложной функции.
контрольная работа [158,8 K], добавлен 24.04.2009Возможные случаи ориентации прямой и плоскости для заданного уравнения. Условия их перпендикулярности и параллельности. Скалярное произведение перпендикулярных векторов. Координаты точки, лежащей на прямой. Угол между прямой и плоскостью, его определение.
презентация [65,2 K], добавлен 21.09.2013Понятие и определение пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами основания. Площадь боковой поверхности, основания и полной поверхности пирамиды. Свойства произвольных, усеченных и правильных пирамид. Определение высоты боковой грани.
презентация [726,8 K], добавлен 05.04.2012Нахождение длины сторон и площади треугольника, координат центра тяжести пирамиды, центра масс тетраэдра. Составление уравнений геометрического места точек, высоты, медианы, биссектрисы внутреннего угла, окружности. Построение системы линейных неравенств.
контрольная работа [1,2 M], добавлен 13.12.2012Понятие многогранника и его элементы с точки зрения топологии. Определение площади и боковой поверхности призмы, параллелепипеда, пирамиды. Понятие правильных, полуправильных, звездчатых многогранников. Многогранники в разных областях культуры и науки.
курсовая работа [4,6 M], добавлен 02.04.2012Свойства множества Кантора. Исследование заданной функции на непрерывность. Выражение множества B (кладбище Серпинского) и D (гребёнка Кантора) через множество Кантора. Свойства и построение всюду непрерывной, но нигде не дифференцируемой функции.
курсовая работа [1,1 M], добавлен 24.06.2015