Начертательная геометрия
Изображение фигуры на плоскости как графический способ представления информации. Многообразие геометрических объектов пространства, отношения между ними и их графическое отображение на плоскости. Основы визуализации информации геометрических объектов.
Рубрика | Математика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 21.04.2015 |
Размер файла | 5,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Рисунок 5.9. Горизонтальная плоскость
3.2. Фронтальная плоскость - плоскость параллельная фронтальной плоскости проекций (П2), (П1, П3). Любая фигура в этой плоскости проецируется на плоскость П2 без искажения, а на плоскости П1 и П3 в прямые - следы плоскости П1 и П3 (рис.5.10).
Рисунок 5.10. Фронтальная плоскость
3.3. Профильная плоскость - плоскость параллельная профильной плоскости проекций (//П3), (П1, П2). Любая фигура в этой плоскости проецируется на плоскость П3 без искажения, а на плоскости П1 и П2 в прямые - следы плоскости П1 и П2 (рис.5.11).
Рисунок 5.11. Профильная плоскость
Лекция №5-3. Следы плоскости
Следом плоскости называется линия пересечения плоскости с плоскостями проекций. В зависимости от того с какой из плоскостей проекций пересекается данная, различают: горизонтальный, фронтальный и профильный следы плоскости. Каждый след плоскости является прямой линией, для построения которых необходимо знать две точки, либо одну точку и направление прямой( как для построения любой прямой). На рисунке 5.12 показано нахождение следов плоскости б(АВС). Фронтальный след плоскости бП2, построен, как прямая соединяющая две точки N(АС) и N(АВ), являющиеся фронтальными следами соответствующих прямых, принадлежащих плоскости б. Горизонтальный след бП1 - прямая, проходящая через горизонтальные следы прямых ВС и АВ. Профильный след бП3 - прямая соединяющая точки (бy и бz) пересечения горизонтального и фронтального следов с осями.
Рисунок 5.12. Построение следов плоскости
Взаимное расположение прямой и плоскости
Определение взаимного положения прямой и плоскости - позиционная задача, для решения которой применяется метод вспомогательных секущих плоскостей. Сущность метода заключается в следующем: через прямую проведем вспомогательную секущую плоскость и установим относительное положение двух прямых а и в, последняя из которых является линией пересечения вспомогательной секущей плоскости и данной плоскости .
Каждому из трех возможных случаев относительного расположения этих прямых соответствует аналогичный случай взаимного расположения прямой и плоскости. Так, если обе прямые совпадают, то прямая а лежит в плоскости , параллельность прямых укажет на параллельность прямой и плоскости и, наконец, пересечение прямых соответствует случаю когда прямая а пересекает плоскость .
Таким образом возможны три случая относительного расположения прямой и плоскости:
Прямая принадлежит плоскости;
Прямая параллельна плоскости;
Прямая пересекает плоскость, частный случай - прямая перпендикулярна плоскости.
Рассмотрим каждый случай
Прямая линия, принадлежащая плоскости
Аксиома 1. Прямая принадлежит плоскости, если две её точки принадлежат той же плоскости (рис.5.14).
Задача. Дана плоскость (n,k) и одна проекция прямой m2.
Требуется найти недостающие проекции прямой m если известно, что она принадлежит плоскости, заданной пересекающимися прямыми n и k.
Проекция прямой m2 пересекает прямые n и k в точках В2 и С2, для нахождения недостающих проекций прямой необходимо найти недостающие проекции точек В и С как точек, лежащих на прямых соответственно n и k.
Таким образом точки В и С принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эти точки, значит согласно аксиоме, прямая принадлежит этой плоскости.
Рисунок 5.14. Прямая и плоскость имеют две общие точки
Аксиома 2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости (рис.5.15).
Задача.
Через точку В провести прямую m если известно, что она принадлежит плоскости заданной пересекающимися прямыми n и k.
Пусть В принадлежит прямой n лежащей в плоскости заданной пересекающимися прямыми n и k. Через проекцию В2 проведем проекцию прямой m2 параллельно прямой k2, для нахождения недостающих проекций прямой необходимо построить проекцию точки В1, как точки лежащей на проекции прямой n1 и через неё провести проекцию прямой m1 параллельно проекции k1.
Таким образом точки В принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эту точку и параллельна прямой k, значит согласно аксиоме прямая принадлежит этой плоскости.
Рисунок 5.15. Прямая имеет с плоскостью одну общую точку и параллельна прямой расположенной в этой плоскости
Главные линии в плоскости
Среди прямых линий, принадлежащих плоскости, особое место занимают прямые, занимающие частное положение в пространстве:
1. Горизонтали h - прямые, лежащие в данной плоскости и параллельные горизонтальной плоскости проекций (h h hОх,hОy)(рис.5.16).
а) модель б) эпюр
Рисунок 5.16. Горизонталь
2. Фронтали f - прямые, расположенные в плоскости и параллельные фронтальной плоскости проекций (f f fОх, fОz)(рис.5.17).
а) модель б) эпюр
Рисунок 5.17. Фронталь
3. Профильные прямые р - прямые, которые находятся в данной плоскости и параллельны профильной плоскости проекций (р р р1Ох рОх) (рис.5.18).
а) модель б) эпюр
Рисунок 5.18. Профильная прямая
Следует заметить, что следы плоскости можно отнести тоже к главным линиям. Горизонтальный след - это горизонталь плоскости, фронтальный - фронталь и профильный - профильная линия плоскости.
4. Линия наибольшего ската и её горизонтальная проекция образуют линейный угол , которым измеряется двугранный угол, составленный данной плоскостью и горизонтальной плоскостью проекций (рис.5.19).
а) модель б) эпюр
Рисунок 5.19. Линия наибольшего ската
Очевидно, что если прямая не имеет двух общих точек с плоскостью, то она или параллельна плоскости, или пересекает ее.
Лекция №5-4. Прямая линия, параллельная плоскости
При решении вопроса о параллельности прямой линии и плоскости необходимо опираться на известное положение стереометрии: прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскостии не принадлежит этой плоскости.
Задача. Дано: проекции плоскости общего положения ABC и прямой общего положения а.
Требуется оценить их взаимное положение (рис.5.20).
а) модель б) эпюр
Рисунок 5.20. Прямая параллельная плоскости
Для этого через прямую а проведем вспомогательную секущую плоскость - в данном случае горизонтально проецирующая плоскость. Найдем линию пересечения плоскостей и АВС- прямую п (DF). Проекция прямой п на горизонтальную плоскость проекций совпадает с проекцией а1 и со следом плоскости . Проекция прямой п2 параллельна а2, п3 параллельна а3, следовательно, прямая а параллельна плоскости AВС.
Прямая линия, пересекающая плоскость
Нахождение точки пересечения прямой линии и плоскости - основная задача начертательной геометрии.
Задача. Дано: плоскость AВС и прямая а.
Требуется найти точку пересечения прямой с плоскостью и определить видимость прямой по отношению к плоскости.
Для решения задачи:
Через горизонтальную проекцию прямой а1 проведем вспомогательную горизонтально проецирующую плоскость (таким образом а ).
Горизонтальный след плоскости 1 пересекает проекцию плоскости A1В1С1 в точках D1 и F1, которые определяют положение горизонтальной проекции п1- линии пересечения плоскостей и AВС. Для нахождения фронтальной и профильной проекции п спроецируем точки D и F на фронтальную и профильную плоскости проекций.
На фронтальной и профильной проекциях линия пересечения плоскостей п пересекает проекции а в точке К, которая и является проекцией точки пересечения прямой а с плоскостью AВС, по линии связи находим горизонтальную проекцию К1.
Методом конкурирующих точек определяем видимость прямой а по отношению к плоскости AВС.
Рисунок 5.21. Нахождение точки пересечения прямой и плоскости
Таким образом алгоритм решения задачи состоит из следующей последовательности действий (рис.5.21):
1. Построение вспомогательной секущей плоскости (горизонтально - проецирующая плоскость ), которую проводят через прямую а а;
2. Построение линии пересечения вспомогательной плоскости и заданной плоскости п;
3. Определение искомой точки К, как точки пересечения двух прямых, заданной - а и полученной в результате пересечения плоскостей - п Ка п. В качестве вспомогательной плоскости рекомендуется брать одну из проецирующих плоскостей.
4. Определение видимости прямой а относительно плоскости
Прямая линия перпендикулярная плоскости
Докажем следующую теорему о перпендикуляре к плоскости: Если прямая перпендикулярна плоскости, то горизонтальная проекция этой прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция - фронтальной проекции фронтали плоскости.
Пусть прямая n, перпендикулярная плоскости, пересекает плоскость BCD в точке N, тогда по условию n перпендикулярна любой прямой плоскости. Проведем в плоскости BCD горизонталь h, а на основании теоремы о проецировании прямого угла можно утверждать, что на горизонтальную плоскость проекций они проецируются под прямым углом, т.е. n1 ?h1. Аналогично для фронтали - f ? n ? f2 ? n2.
Справедлива и обратная теорема: Если проекции прямой перпендикулярны одноименным проекциям соответствующих главных линий плоскости (горизонтали и фронтали), то такая прямая перпендикулярна плоскости.
Доказательство следует из теоремы о проецировании прямого угла.
Исходя из рассмотренных теорем, можно решить задачу о построении перпендикуляра к плоскости из точки А (рис.5.22).
Задача. Дано: плоскость ВСD и точка А.
Требуется построить прямую линию n проходящую через точку А и перпендикулярную плоскости ВСD.
В плоскости ВСD построим фронталь f и горизонталь h. В горизонтальной плоскости проекций проведем через точку А1 прямую n1 перпендикулярно горизонтальной проекции горизонтали h1, а на фронтальной плоскости проекций через точку А2 прямую n2 перпендикулярно фронтальной проекции фронтали f2, согласно выше сказанному полученная прямая n будет перпендикулярна плоскости ВСD.
Рисунок 5.22. Построение прямой, перпендикулярной плоскости
Взаимное расположение точки и плоскости
Возможны два варианта взаимного расположения точки и плоскости: либо точка принадлежит плоскости, либо нет.
Если точка принадлежит плоскости, то из трех проекций, определяющих положение точки в пространстве, произвольно задать можно только одну.
Рассмотрим пример (рис.5.23): Построение проекции точки А принадлежащей плоскости общего положения, заданной двумя параллельными прямыми ab.
Задача. Дано: плоскость ?(а,в) и проекция точки А2.
Требуется построить проекцию А1 если известно, что точка А лежит в плоскости в,а.
Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2 и b2 в точках С2 и В2 (С m). Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А (А1 m1 m А).
Рисунок 5.23. Точка, принадлежащая плоскости
Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2 и b2 в точках С2 и В2 (Сm). Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А (А1 m1 m А).
Лекция №5-5. Взаимное расположение точки и плоскости
Возможны два варианта взаимного расположения точки и плоскости: либо точка принадлежит плоскости, либо нет.
Если точка принадлежит плоскости, то из трех проекций, определяющих положение точки в пространстве, произвольно задать можно только одну.
Рассмотрим пример (рис.5.23): Построение проекции точки А принадлежащей плоскости общего положения, заданной двумя параллельными прямыми ab.
Задача. Дано: плоскость ?(а,в) и проекция точки А2.
Требуется построить проекцию А1 если известно, что точка А лежит в плоскости в,а.
Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2 и b2 в точках С2 и В2 (С m). Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А (А1 m1 m А).
Рисунок 5.23. Точка, принадлежащая плоскости
Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2 и b2 в точках С2 и В2 (Сm). Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А (А1 m1 m А).
Взаимное расположение двух плоскостей
Две плоскости в пространстве могут быть либо взаимно параллельны, в частном случае совпадая друг с другом, либо пересекаться. Взаимно перпендикулярные плоскости представляют собой частный случай пересекающихся плоскостей.
1. Параллельные плоскости. Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.
Это определение хорошо иллюстрируется задачей, через точку В провести плоскость параллельную плоскости, заданной двумя пересекающимися прямыми ab (рис.5.24).
Задача. Дано: плоскость общего положения, заданную двумя пересекающимися прямыми ab и точка В.
Требуется через точку В провести плоскость, параллельную плоскости ab и задать её двумя пересекающимися прямыми c и d.
Согласно определения если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости то эти плоскости параллельны между собой.
Для того чтобы провести на эпюре параллельные прямые необходимо воспользоваться свойством параллельного проецирования - проекции параллельных прямых - параллельны между собой
d//a, с//b с1//b1; с2//b2; с3//b3.
Рисунок 5.24. Параллельные плоскости
2. Пересекающиеся плоскости, частный случай - взаимно перпендикулярные плоскости. Линия пересечения двух плоскостей является прямая, для построения которой достаточно определить две её точки, общие обеим плоскостям, либо одну точку и направление линии пересечения плоскостей.
Рассмотрим построение линии пересечения двух плоскостей, когда одна из них проецирующая (рис.5.25).
Задача. Дано: плоскость общего положения задана треугольником АВС, а вторая плоскость - горизонтально проецирующая .
Требуется построить линию пересечения плоскостей.
Решение задачи заключается в нахождении двух точек общих для данных плоскостей, через которые можно провести прямую линию. Плоскость, заданная треугольником АВС можно представить, как прямые линии (АВ), (АС), (ВС). Точка пересечения прямой (АВ) с плоскостью - точка D, прямой (AС) -F. Отрезок DF определяет линию пересечения плоскостей. Так как ? - горизонтально проецирующая плоскость, то проекция D1F1 совпадает со следом плоскости ?П1? таким образом остается только построить недостающие проекции ?DF? на П2 и П3.
Рисунок 6.25. Пересечение плоскости общего положения с горизонтально проецирующей плоскостью
Перейдем к общему случаю. Пусть в пространстве заданы две плоскости общего положения и (ABC) (рис.5.26).
Рисунок 5.26. Пересечение плоскостей общего положения
Рассмотрим последовательность построения линии пересечения плоскостей (m//n) и (АВС). По аналогии с предыдущей задачей для нахождения линии пересечения данных плоскостей проведем вспомогательные секущие плоскости и . Найдем линии пересечения этих плоскостей с рассматриваемыми плоскостями. Плоскость пересекает плоскость по прямой (12), а плоскость - по прямой (34). Точка К - точка пересечения этих прямых одновременно принадлежит трем плоскостям , и , являясь таким образом точкой принадлежащей линии пересечения плоскостей и . Плоскость пересекает плоскости и по прямым (56) и (7C) соответственно, точка их пересечения М расположена одновременно в трех плоскостях , , и принадлежит прямой линии пересечения плоскостей и . Таким образом найдены две точки принадлежащие линии пересечения плоскостей и - прямая (КМ).
Некоторого упрощения при построении линии пересечения плоскостей можно достичь, если вспомогательные секущие плоскости проводить через прямые, задающие плоскость.
Взаимно перпендикулярные плоскости. Из стереометрии известно, что две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Через точку А можно провести множество плоскостей перпендикулярных данной плоскости (f,h). Эти плоскости образуют в пространстве пучок плоскостей, осью которого является перпендикуляр, опущенный из точки А на плоскость . Для того чтобы из точки А провести плоскость перпендикулярную плоскости заданной двумя пересекающимися прямыми hf необходимо из точки А провести прямую n перпендикулярную плоскости hf (горизонтальная проекция n перпендикулярна горизонтальной проекции горизонтали h, фронтальная проекция n перпендикулярна фронтальной проекции фронтали f). Любая плоскость, проходящая через прямую n будет перпендикулярна плоскости hf, поэтому для задания плоскости через точки А проводим произвольную прямую m. Плоскость заданная двумя пересекающимися прямыми mn будет перпендикулярна плоскости hf (рис.5.27).
Рисунок 5.27. Взаимно перпендикулярные плоскости
Лекция №6-1. Многогранники
Многогранником называется совокупность таких плоских многоугольников, у которых каждая сторона одного является одновременно стороной другого (но только одного).
Виды многогранников |
Кратко охарактеризуем геометрические свойства некоторых многогранников:
1. Пирамида - это многогранник, одна грань которого многоугольник, а остальные грани - треугольники с общей вершиной. Пирамида называется правильной, если в основании лежит правильный многоугольник и высота пирамиды проходит через центр многоугольника. Пирамида называется усеченной, если вершина её отсекается плоскостью (рис.6.1.).
Рисунок 6.1. Пирамида
2. Призма - многоугольник, две грани которого (основания призмы) представляют собой равные многоугольники с взаимно параллельными сторонами, а все другие грани параллелограммы. Призма называется прямой, если её ребра перпендикулярны плоскости основания. Если основанием призмы является прямоугольник, призму называют параллелепипедом (рис 6.2.).
Рисунок 6.2. Призма
3. Призматоид - многогранник, ограниченный двумя многоугольниками, расположенными в параллельных плоскостях (они являются его основаниями); его боковые грани представляют собой треугольники и трапеции, вершины которых являются и вершинами многоугольников оснований (рис.6.3.).
Рисунок 6.3. Призматоид
4. Тела Платона. Многогранник, все грани которого представляют собой правильные и равные многоугольники, называют правильными Углы при вершинах такого многогранника равны между собой.
Существует пять типов правильных многогранников. Эти многогранники и их свойства были описаны более двух тысяч лет назад древнегреческим философом Платоном, чем и объясняется их общее название.
Каждому правильному многограннику соответствует другой правильный многогранник с числом граней, равным числу вершин данного многогранника. Число ребер у обоих многогранников одинаково.
Тетраэдр - правильный четырехгранник (рис 6.4.). Он ограничен четырьмя равносторонними треугольниками (это правильная треугольная пирамида).
Рисунок 6.4. Тетраэдр
Гексаэдр - правильный шестигранник (рис. 6.5.). Это куб состоящий из шести равных квадратов.
Рисунок 6.5. Гексаэдр
Октаэдр - правильный восьмигранник (рис.6.6.). Он состоит из восьми равносторонних и равных между собой треугольников, соединенных по четыре у каждой вершины.
Рисунок 6.6. Октаэдр
Додекаэдр - правильный двенадцатигранник, состоит из двенадцати правильных и равных пятиугольников, соединенных по три около каждой вершины (рис. 6.7.).
Рисунок 6.7. Додекаэдр
Икосаэдр - состоит из 20 равносторонних и равных треугольников, соединенных по пять около каждой вершины (рис.6.8.).
Рисунок 6.8. Икосаэдр
5. Звездчатые формы и соединения тел Платона. Кроме правильных выпуклых многогранников существуют и правильные выпукло-вогнутые многогранники. Их называют звездчатыми (самопересекающимися). Рассматривая пересечения продолжения граней Платоновых тел, мы будем получать звездчатые многогранники.
Звездчатый октаэдр - восемь пересекающихся плоскостей граней октаэдра отделяют от пространства новые "куски", внешние по отношению к октаэдру. Это малые тетраэдры основания, которые совпадают с гранями октаэдра. его можно рассматривать как соединение двух пересекающихся тетраэдров центры которых совпадают с центром исходного октаэдра. Все вершины звездчатого октаэдра совпадают с вершинами некоторого куба, а ребра его являются диагоналями граней (квадратов) этого куба. Дальнейшее продление граней октаэдра не приводит к созданию нового многогранника. Октаэдр имеет только одну звездчатую форму. Такой звездчатый многогранник в 1619 году описал Кеплер (1571-1630) и назвал его stella octangula - восьмиугольная звезда.
Малый звездчатый додекаэдр - звездчатый додекаэдр первого продолжения. Он образован продолжением граней выпуклого додекаэдра до их первого пересечения. Каждая грань выпуклого додекаэдра при продолжении образует правильный звездчатый пятиугольник. Пересекающиеся плоскости граней додекаэдра отделяют от пространства новые "куски", внешние по отношению к додекаэдру. Это двенадцать правильных пятиугольных пирамид, основания которых совпадают с гранями додекаэдра. При дальнейшем продолжении граней до нового пересечения образуется средний звездчатый додекаэдр - звездчатый додекаэдр второго продолжения. Последней же звездчатой формой правильного додекаэдра является звездчатый додекаэдр третьего продолжения - большой звездчатый додекаэдр. Он образован продолжением граней звездчатого додекаэдра второго продолжения до их нового пересечения.
Лекция №6-2. Пересечение плоскости с многогранникомЛекция №7-1. Кривые линии
Построение сечения многогранника требует многократного решения задачи о нахождении точки пересечении прямой с плоскостью. Точки, в которых ребра многогранника пересекаются с заданной плоскостью, будут вершинами искомого сечения.
Тот же результат можно получить, сведя задачу к построению прямых пересечения плоскости с гранями тела.
Дана призма и плоскость общего положения заданная двумя пересекающимися прямыми а и в (рис.6.11). Необходимо найти сечение призмы данной плоскостью.
Рисунок 6.11. Пересечение плоскости общего положения с призмой
Решим поставленную задачу нахождением точек пересечения ребер призмы с плоскостью. Для чего, через горизонтальные проекции ребер проведем вспомогательные секущие плоскости б, в и г. Построив линии пересечения вспомогательных плоскостей с заданной, находим на фронтальной проекции точки пересечения их с соответствующими ребрами призмы К2, М2 и N2 - вершины фронтальной проекции сечения призмы. По линиям связи находим горизонтальные проекции этих точек. Полученные точки соединяем прямыми линиями, с учетом видимости. При решении вопроса о видимости сторон построенного сечения следует иметь в виду достаточно очевидное правило: точка и линия, лежащие на поверхности многогранника, видимы только в том случае, если они расположены на видимой грани.
Пересечение прямой линии с многогранником
Для определения точек пересечения прямой линии с многогранником, задача сводится к нахождению точек пересечения прямой с плоскостями граней (рис.6.12).
Алгоритм решения задачи:
1. Провести плоскость : m.
2. Построить сечение многогранника плоскостью .
Определить искомые точки К,М - пересечения полученного сечения с прямой m
Рисунок 6.12. Пересечение прямой линии с пирамидой
Взаимное пересечение многогранников
Построение линии взаимного пересечения многогранных поверхностей можно производить двумя способами, комбинируя их между собой или выбирая из них тот, который в зависимости от условий задания дает более простые построения. Эти способы следующие:
1.Определяют точки, в которых ребра одной из многогранных поверхностей пересекают грани другой и ребра второй пересекают грани первой (задача на пересечение прямой с плоскостью). Через найденные точки в определенной последовательности проводят ломаную линию, представляющую собой линию пересечения данных многогранников. При этом можно соединять прямыми проекции лишь тех точек, полученных в процессе построения, которые лежат в одной и той же грани.
2. Определяют отрезки прямых, по которым грани одной поверхности пересекают грани другой (задача на пересечение двух плоскостей между собой); эти отрезки являются звеньями ломаной линии, получаемой при пересечении многогранных поверхностей.
Если проекция ребра одной из поверхностей не пересекает проекции грани другой хотя бы на одной из проекций, то данное ребро не пересекает этой грани. Однако пересечение проекций ребра и грани еще не означает, что ребро и грань пересекаются в пространстве
Рисунок 6.13. Пересечение пирамиды с призмой
На примере (рис.6.13) показано пересечение поверхности треугольной призмы с треугольной пирамидой. Построение основано на нахождении точек пересечения ребер одного многогранника с гранями другого. На рисунке 6.13 б показано построение линии пересечения пирамиды АВСS и треугольной призмы DEFD*E*F*.
Для нахождения точек 1 и 2 в которых ребро пирамиды AS пересекает грани DD*EE* и EE*FF* призмы, через проекцию ребра A2S2 проведена фронтально проецирующая плоскость бП2, которая пересекает ребра призмы в трех точках, горизонтальные проекции этих точек пересечения плоскости б с ребрами призмы, образуют треугольник. Проекция ребра пирамиды A1S1 пересекает полученный треугольник в точках 11 и 21.
С помощью фронтально - проецирующей плоскости в, находим точки 5 и 6 пересечения ребра пирамиды SC с гранями призмы EE*FF* и EE*DD*, а при помощи горизонтально проецирующей плоскости г находим точки 3 и 4 пересечения ребра призмы с гранями пирамиды. Соединив полученные точки, с учетом видимости, получим пространственную ломаную линию - линию пересечения данных многогранников.
Лекция №7-1. Кривые линии
Кривая линия - это множество точек пространства, координаты которых являются функциями одной переменной. Термин "кривая" в разных разделах математики определяется по-разному. В начертательной геометрии кривую рассматривают как траекторию, описанную движущей точкой, как проекцию другой кривой, как линию пересечения двух поверхностей, как множество точек, обладающих каким-либо общим для всех их свойством и т.д.
Рисунок 7.1 Циклоида
Например, (рис.7.1) циклоида - траектория движения точки окружности, катящейся без скольжения по прямой линии. Эта кривая состоит их ряда "арок", каждая из которых соответствует полному обороту окружности.
Кривые линии, все точки которых принадлежат одной плоскости, называются плоскими, остальные пространственными.
Каждая кривая включает в себя геометрические элементы, которые составляют её определитель, т.е. совокупность независимых условий, однозначно определяющих эту кривую
Различны и способы задания кривых:
?Аналитический - кривая задана математическим уравнением;
?Графический - кривая задана визуально на носителе графической информации;
?Табличный - кривая задана координатами последовательного ряда точек.
Уравнением кривой линии называется такое соотношение между переменными, которому удовлетворяют координаты точки, принадлежащей кривой.
В основу классификации кривых положена природа их уравнений.
Кривые подразделяются на алгебраические и трансцендентные в зависимости от того, являются ли их уравнения алгебраическими или трансцендентными в прямоугольной системе координат.
Плоская кривая линия называется алгебраической, если её уравнение f (xy)=0. Функция f (xy) является степенным множителем относительно переменных х и у; в остальных случаях кривая называется трансцендентной.
Кривая линия, представленная в декартовых координатах уравнением п- й степени, называется алгебраической кривой п-го порядка.
Порядок плоской алгебраической кривой линии определяется наибольшим числом точек её пересечения прямой линией. Любая прямая линия может пересекать алгебраическую кривую линию п-го порядка не более чем в п точках.
Рассмотрим несколько примеров алгебраической кривой линии:
Рисунок 7.2. Парабола
Рисунок 7.3. Гипербола
Рисунок 7.4. Эллипс
Рисунок 7.5. Синусоида
1. Парабола - кривая второго порядка, прямая пересекает ее в двух точках (рис.7.2). При этом парабола может быть определена как:
-множество точек М(xy) плоскости, расстояние FM которых до определенной точки F этой плоскости (фокуса параболы) равно расстоянию MN до определенной прямой АN - директрисы параболы;
-линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и параллельная какой либо касательной плоскости этого конуса;
-в прямоугольной системе координат 0ху с началом в вершине параболы и осью 0х направленной по оси параболы уравнение параболы имеет так называемый канонический вид
y2=2px,
где р (фокальный параметр) - расстояние от фокуса до директрисы.
2. Гипербола :
- множество точек М плоскости (рис.7.3) разность (по абсолютной величине) расстояний F1M и F2M которых до двух определенных точек F1 и F2 этой плоскости (фокусов гиперболы) постоянна:
F1M - F2M=2а<2с
Середина 0 отрезка F1F2 (фокусного расстояния) называется центром гиперболы;
- линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающая обе его полости;
- в прямоугольной системе координат 0ху с началом в центре гиперболы, на оси 0х которой лежат фокусы гиперболы уравнение гиперболы имеет так называемый канонический
х2/а2 - у2/в2=1, в2=с2 - а2,
где а и в длинны полуосей гиперболы.
3. Эллипс :
- множество точек М плоскости (рис.7.4), сумма расстояний МF1 и МF2 которых до двух определенных точек F1 и F2 (фокусов эллипса) постоянна
МF1+МF2=2а.
Середина 0 отрезка F1F2 (фокусного расстояния)называется центром эллипса;
- линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающей все прямолинейные образующие одной полости этого конуса;
- в прямоугольной системе координат 0ху с началом в центре эллипса, на оси 0х которой лежат фокусы эллипса уравнение эллипса имеет следующий вид
х2/а2+у2/в2=1,
где а и в - длинны большой и малой полуосей эллипса. При а=в фокусы F1 и F2 совпадают и указанное уравнение определяет окружность, которая рассматривается как частный случай эллипса.
Рассмотренные плоские кривые линии, получаемые при пересечении поверхности прямого кругового конуса плоскостями, различно расположенными по отношению к оси конуса, называют кривыми конических сечений
Трансцендентные кривые в отличие от алгебраических могут иметь бесконечное количество точек пересечения с прямой, точек перегиба, вершин и т.п.
Синусоида - трансцендентная плоская кривая линия (рис.7.5), получающаяся в результате двойного равномерного движения точки - поступательного и возвратно-поступательного в направлении, перпендикулярном первому.
Синусоида - график функции у=sin x, непрерывная кривая линия с периодом Т=2п.
Наряду с этим у трансцендентных кривых могут быть характерные точки, которых не существует у алгебраических кривых: точки прекращения, угловые точки (точки излома), асимптотические точки. Простейшими примерами трансцендентных кривых служат графики функций логарифмической, показательной тригонометрической, а также все спирали, циклоиды и т.п.
Кривая линия как траектория движущейся точки должна быть непрерывной.
Движущаяся точка в любом положении должна иметь определенное направление движения. Это направление указывает прямая (касательная), проходящая через рассматриваемую точку.
Длина отрезка кривой линии определяется в общем случае, как сумма длин отрезков вписанной в нее ломаной линии, с заданной точностью передающей форму кривой.
Особый интерес представляют окружность и цилиндрическая винтовая линии, каждая из которых является эталоном соответственно плоских и пространственных кривых линий.
В практике конструирования линий и поверхностей широко используются обводы. Это кривые, составленные из дуг различных кривых, определенных парами смежных точек. Обводом ряда точек плоскости является плоская кривая, пространства - пространственная.
Точки стыка дуг называются узлами. Обвод заданный координатами своих точек называется дискретным. Обвод называется гладким, если дуги обвода в узлах имеют общие касательные.
Рисунок 7.6. Касательные к кривой линии
Плоская кривая а построена в плоскости (рис.7.6). Через точку А проведены секущие хорды АЕ и АD. Если точку Еприближать к точке А, секущая АЕповорачивается вокруг точки А. Когда точка Е совпадет с точкой А (А?Е) секущая АЕдостигнет своего предельного положения t. В этом предельном положении секущая называется полукасательной к кривой а в точке А. Секущая АD в предельном положении А?D также представлена полукасательной t.
Кривая линия в точке А имеет две полукасательные прямые, которые совпадают и определяют одну касательную к кривой линии в точке А - кривая в этой точке называется плавной.
Кривая плавная во всех её точках называется плавной кривой линией.
Нормалью п в точке А кривой линии называется перпендикуляр к касательной.
На кривой линии могут быть точки где разнонаправленные полукасательные не принадлежат одной прямой, а составляют между собой угол. Так на кривой а в точке В угол дмежду полукасательными не равен 1800. Точка В в этом случае называется точкой излома или выпадающей точкой.
Рисунок 7.7. Кривая линия как траектория движения точки
Плоскую кривую линию можно рассматривать как траекторию движения точки в плоскости (рис.8.7); точка движется по касательной к кривой линии, обкатывая эту кривую без скольжения.
Движение точки вдоль кривой а связано с непрерывным изменением двух величин: расстояния S, на которое удалена точка от начального положения и угла б поворота касательной относительно начального положения.
Если с увеличением пути S непрерывно увеличивается и б, кривая называется простой.
Угол б (угол смежности) между касательными в двух бесконечно близких точках кривой, отнесенный к длине дуги между этими точками, определяет степень искривленности кривой линии, т.е. определяет кривизнукривой
,
предел отношения угла смежности касательных к соответствующей дуге
Рисунок 7.8. Кривизна кривой
Кривизна прямой в любой её точке равна нулю.
Кривизна произвольной кривой линии в различных точках различна, в отдельных точках она может быть равна нулю. Такие точки называются точками спрямления.
Кривизна в каждой из точек плоской кривой а определяется с помощью соприкасающейся в этой точке окружности (рис.7.8).
Соприкасающейся окружностью или кругом кривизны в данной точке называется предельное положение окружности, когда она проходит через данную точку и две другие бесконечно близкие к ней точки.
Центр соприкасающейся окружности называется центром кривизны кривой в данной точке, а радиус такой окружности - радиусом кривизны кривой линии в данной точке.
Множество центров кривизны кривой является кривая линия- её называют эволютой данной кривой, а кривая по отношению к своей эволюте называется эвольвентой.
Лекция №7-2. Свойства ортогональных проекций кривой линии
1. Проекцией кривой линии является кривая линия;
2. Касательная к кривой линии проецируется в касательную к её проекции;
3. Несобственная точка кривой проецируется в несобственную точку её проекции;
4. Порядок линии - проекции алгебраической кривой равен порядку самой кривой или меньше;
5. Число узловых точек ( в которых кривая пересекает сама себя) проекции равно числу узловых точек самой кривой.
Случаи когда, плоская кривая проецируется в прямую (свойства 1,4,5), а касательная в точку (свойство 2) не учитываются.
Пространственные кривые линии
Пространственные кривые линии в начертательной геометрии обычно рассматриваются как результат пересечения поверхностей или траекторию движения точки.
Пространственную, так же как и плоскую, кривую линию на чертеже задают последовательным рядом точек.
Классическим примером пространственных кривых линий являются цилиндрическая и коническая винтовые линии.
Цилиндрическая винтовая линия.
Такую линию в пространстве описывает точка, которая движется по какой-либо образующей прямого кругового цилиндра, вращающегося вокруг своей оси так, что путь проходимый точкой по образующей пропорционален углу поворота цилиндра (рис. 7.9).
Рисунок 7.9. Цилиндрическая винтовая линия (правая)
Смещение точки вдоль образующей за один оборот называется шагом цилиндрической винтовой линии.
Различают правую и левую винтовые линии
Коническая винтовая линия.
Такую линию описывает точка, которая движется по какой-либо образующей прямого кругового конуса, вращающегося вокруг своей оси так, что путь пройденный точкой по образующей все время равен углу поворота конуса (рис.7.10).
Проекция на ось конуса смещения точки вдоль образующей за один оборот называется шагом конической винтовой линии. Горизонтальной проекцией конической винтовой линии является спираль Архимеда - одна из замечательных плоских кривых линий.
Рисунок 7.10 Коническая винтовая линия
Лекция №8-1. Поверхность. Формообразование поверхностей. Поверхности вращения. Винтовые поверхности. Линейчатые поверхности с плоскостью параллелизма (Поверхности Каталана). Поверхности параллельного переноса
"Поверхность, одно из основных геометрических понятий. При логическом уточнении этого понятия в разных отделах геометрии ему придаётся различный смысл.
1) В школьном курсе геометрии рассматриваются плоскости, многогранники, а также некоторые кривые поверхности. Каждая из кривых П. определяется специальным способом, чаще всего как множество точек, удовлетворяющих некоторым условиям. Например, поверхность шара - множество точек, отстоящих на заданном расстоянии от данной точки. Понятие "Поверхность" лишь поясняется, а не определяется. Например, говорят, что поверхность есть граница тела или след движущейся линии.
2) Математически строгое определение поверхности основывается на понятиях топологии. При этом основным является понятие простой поверхности, которую можно представить, как кусок плоскости, подвергнутый непрерывным деформациям (растяжениям, сжатиям и изгибаниям). ..."
*Большая советская энциклопедия.
Поверхности составляют широкое многообразие нелинейных фигур трехмерного пространства. Инженерная деятельность человека связана непосредственно с конструированием, расчетом и, изготовлением различных поверхностей. Большинство задач прикладной геометрии сводится к автоматизации конструирования, расчета и воспроизведения сложных технических поверхностей. Способы формообразования и отображения поверхностей, начертательной геометрии составляют основу инструментальной базы трехмерного моделирования современных графических редакторов.
Рассматривая поверхности как непрерывное множество точек, между координатами которых может быть установлена зависимость, определяемая уравнением вида F(x,y,z)=0, можно выделить алгебраические поверхности (F(x,y,z)- многочлен n-ой степени) и трансцендентные (F(x,y,z)- трансцендентная функция).
Если алгебраическая поверхность описывается уравнением n-й степени, то поверхность считается поверхностью n-го порядка. Произвольно расположенная секущая плоскость пересекает поверхность по кривой того же порядка (иногда распадающейся или мнимой), какой имеет исследуемая поверхность. Порядок поверхности может быть определен также числом точек ее пересечения с произвольной прямой, не принадлежащей целиком поверхности, считая все точки (действительные и мнимые).
В начертательной геометрии фигуры задаются графически, поэтому целесообразно поверхность рассматривать как совокупность всех последовательных положений некоторой перемещающейся в пространстве линии.
Образование и задание поверхности на чертеже
Поверхность можно рассматривать, как совокупность последовательных положений l1,l2… линии l, перемещающейся в пространстве по определенному закону. В процессе образования поверхности линия l может оставаться неизменной или менять свою форму - изгибаться или деформироваться. Для наглядности изображения поверхности на эпюре Монжа закон перемещения линии l целесообразно задавать графически в одной линии или целого семейства линий (m, n, p...). Подвижную линию принято называть образующей, неподвижные - направляющими. Такой способ образования поверхности принято называть кинематическим.
Примером такого способа могут служить все технологические процессы обработки металлов режущей кромкой, когда поверхность изделия несет на себе "отпечаток" режущей кромки резца, т.е. её поверхность можно рассматривать как множество, линий конгруэнтных профилю резца.
По виду образующей различают поверхности линейчатые и нелинейчатые, образующая первых - прямая линия, вторых - кривая.
Линейчатые поверхности в свою очередь разделяют на так называемые развертывающие, которые можно без складок и разрывов развернуть на плоскость и неразвертывающиеся.
Значительный класс поверхностей формируется движением окружности постоянного или переменного радиуса. Это так называемые циклические поверхности.
Если же группировать поверхности по закону движения образующей линии и производящей поверхности, то большинство встречающихся в технике поверхностей можно разделить на:
?Поверхности вращения;
?Винтовые поверхности;
?Поверхности с плоскостью параллелизма;
?Поверхности переноса.
Особое место занимают такие нелинейные поверхности, образование которых, не подчинено ни какому закону. Оптимальную форму таких поверхностей определяют теми физическими условиями, в которых они работают и устанавливают ее форму экспериментально (поверхности лопастей турбин, обшивка каркасов морских судов и самолетов).
Множество линий, заполняющих поверхность так, что через каждую точку поверхности проходит в общем случае одна линия этого множества, называется каркасом поверхности.
Поверхность может быть задана и конечным множеством точек, которое принято называть точечным каркасом.
Проекции каркаса могут быть построены, если задан определитель поверхности - совокупность условий, задающих поверхность в пространстве и на чертеже.
Различают две части определителя: геометрическую и алгоритмическую.
Геометрическая часть определителя представляет собой набор постоянных геометрических элементов (точек, прямых, плоскостей и т.п.), которые могут и не входить в состав поверхности.
Вторая часть - алгоритмическая (описательная) - содержит перечень операций, позволяющий реализовать переход от фигуры постоянных элементов к непрерывному каркасу.
Например, циклическая поверхность, каркас которой состоит из окружностей (рис.8.3), может быть задан следующим образом:
?Геометрическая часть определителя: три направляющих l, m, n, ось i пучка плоскостей
?Алгоритмическая часть: выделяем из пучка плоскостей с осью i плоскость б; находим точки А, В, С, в которых б пересекает соответственно направляющие l, m, n. Строим окружность, определяемую тремя найденными точками. Переходим к следующей плоскости пучка и повторяем построение.
Рисунок 8.3. Образование циклической поверхности
Поверхности вращения
Поверхности вращения - это поверхности созданные при вращении образующей m вокруг оси i (рис.8.4).
Геометрическая часть определителя состоит из двух линий: образующей m и оси i (рис 8.4.а).
Алгоритмическая часть включает две операции:
1. На образующей m выделяют ряд точек A, B, C, …F;
2. Каждую точку вращают вокруг оси i.
Рисунок 8.4. Образование поверхности вращения
Рисунок 8.5 Поверхность вращения
Так создается каркас поверхности, состоящей из множества окружностей (рис.8.5), плоскости которых расположены перпендикулярно оси i. Эти окружности называются параллелями; наименьшая параллель называется горлом, наибольшая - экватором.
Из закона образования поверхности вращения вытекают два основных свойства:
1. Плоскость перпендикулярная оси вращения, пересекает поверхность по окружности - параллели.
2. Плоскость, проходящая через ось вращения, пересекает поверхность по двум симметричным относительно оси линиям - меридианам.
Плоскость проходящая через ось параллельно фронтальной плоскости проекций называется плоскостью главного меридиана, а линия, полученная в сечении, - главным меридианом.
Рассмотрим наиболее распространенные поверхности вращения с криволинейными образующими:
Сфера - образуется вращением окружности вокруг её диаметра.
При сжатии или растяжении сферы она преобразуется в эллипсоиды, которые могут быть получены вращением эллипса вокруг одной из осей: если вращение вокруг большой оси то эллипсоид называется вытянутым, если вокруг малой - сжатым или сфероидом.
Тор - поверхность тора формируется при вращении окружности вокруг оси, не проходящей через центр окружности (рис.8.9).
Параболоид вращения - образуется при вращении параболы вокруг своей оси (рис.8.10).
Рисунок 8.8. Тор
Рисунок 8.10. Параболоид вращения
а) однополостной б) двуполостной
Рисунок 8.11. Гиперболоид вращения
Гиперболоид вращения - различают одно (рис.8.11а) и двух (рис.8.11б) полостной гиперболоиды вращения. Первый получается при вращении вокруг мнимой оси, а второй - вращением гиперболы вокруг действительной оси.
Винтовые поверхности.
Винтовые поверхности образуются винтовым движением некоторой линии - образующей.
Под винтовым движением понимается совокупность двух движений: поступательного параллельно некоторой оси, и вращательного, вокруг той же оси.
Рисунок 8.12. Винтовая поверхность
При этом поступательное и угловое перемещение находятся в определенной зависимости
?h=k?v,
где ?h - линейное перемещение за время ?t, ?v - угловое перемещение за то же время, k - коэффициент пропорциональности. Если k=Const, то шаг поверхности постоянный.
Геометрическая часть определителя винтовой поверхности ни чем не отличается от поверхности вращения и состоит из двух линий: образующей m, и оси i (рис.8.12).
Алгоритмическая часть:
1. На образующей m выделяют ряд точек А, В, С, …
2. Строят винтовые линии заданного шага и направления, по которым перемещаются заданные точки.
Линейчатые поверхности с плоскостью параллелизма (поверхности каталана).
Рисунок 8.13. Цилиндроид
Поверхность с плоскостью параллелизма представляет собой множество прямых линий l (образующих), параллельных некоторой плоскости б (плоскости параллелизма) и пересекающих две данные направляющие m, n (рис. 8.13).
В зависимости от формы направляющих образуются три частных вида поверхностей.
Цилиндроид. Цилиндроидом называется поверхность, образованная движением прямолинейной образующей по двум направляющим кривым линиям, при этом образующая во всех положениях параллельна плоскости параллелизма (рис.8.13).
Коноид. Коноидом называется поверхность, образованная движением прямолинейной образующей по двум направляющим, одна из которых кривая линия, а другая прямая, при этом образующая во всех положениях параллельна плоскости параллелизма (рис.8.14).
Гиперболический параболоид. Гиперболическим параболоидом или косой плоскостью называется поверхность, образованная движением прямолинейной образующей, параллельной плоскости параллелизма, по двум направляющим линиям - скрещивающимся прямым (рис.8.15).
Рисунок 8.14. Коноид
Рисунок. 8.15. Гиперболический параболоид
Поверхности параллельного переноса
Поверхностью параллельного переноса называется поверхность, образованная поступательным плоскопараллельным перемещением образующей - плоской кривой линии m по криволинейной направляющей n.
Геометрическая часть определителя состоит из двух кривых линий образующей - m и направляющей - n.
Алгоритмическая часть определителя содержит перечень операций:
На направляющей п выбираем ряд точек А, В, С,…
Строим векторы АВ , ВС,…
Осуществляем параллельный перенос линии т по векторам АВ, ВС , …
Наглядным примером плоскости параллельного переноса может служить скользящая опалубка, применяемая в строительстве.
Лекция №8-2. Линия и точка, принадлежащие поверхности. Пересечение поверхности плоскостью. Конические сечения
Для определения принадлежности точки и линии поверхности рассмотрим следующие позиционные задачи:
Задача 1. Построение линии принадлежащей поверхности, если одна из проекций линии задана (рис. 8.17).
Дано:
1.Поверхность Ф , заданная проекциями каркаса состоящих из образующих линий l и направляющей n.
2. Проекция линии m2, принадлежащей поверхности Ф.
Рисунок 8.17. Линия на поверхности
Алгоритм решения задачи:
1. Находим точки 12, 22, 32, 42 пересечения проекции линии m2 с проекцией каркаса поверхности, т.е. соответственно с проекциями линий l12, l22, l32, l42 .
2. По линиям связи находим проекции точек 11, 21, 31, 41, как точки лежащие на проекциях образующих каркаса соответственно l11, l21, l31, l41 и определяющих положение проекции линии т1 на поверхности Ф.
Задача 2. По одной проекции точки, принадлежащей поверхности, найти точку на поверхности (рис. 8.18).
Дано:
1. Поверхность Ф , заданная проекциями каркаса состоящего из образующих l и направляющих n.
2. Проекция точки К1, принадлежащей поверхности Ф.
Рисунок 8.18. Точка на поверхности
Алгоритм решения задачи:
1. Через заданную проекцию точки К1 проводим одноименную проекцию произвольной вспомогательной линии принадлежащей поверхности т1.
2. Находим точки 11, 21, 31, 41, пересечения проекции линии m1 с проекцией каркаса поверхности, т.е. соответственно с проекциями линий l11, l21, l31, l41.
3. По линиям связи находим проекции точек 12, 22, 32, 42 как точки лежащие на проекциях образующих каркаса соответственноl12, l22, l32, l42 и определяющих положение проекции линии т2 на поверхности Ф.
4. По линии связи находим положение проекции точки К2, как точку принадлежащую вспомогательной линии т2.
Пересечение поверхности плоскостью
В зависимости от положения плоскости по отношению к плоскостям проекций, сложность решения позиционной задачи, по определению линии пересечения ее с поверхностью существенно меняется.
Наиболее простым представляется случай, когда плоскость проецирующая.
Рассмотрим решение задачи по определению линии пересечения сферы фронтально - проецирующей плоскостью б (рис.8.19).
Рисунок 8.19. Пересечение сферы фронтально - проецирующей плоскостью
Окружность, по которой плоскость б пересекает сферу, проецируется на плоскости П1 и П3 в виде эллипса, а на плоскость П2 в прямую линию ограниченную очерком сферы.
Охарактеризуем выбранные для построения точки:
?1, 8- две вершины эллипса, определяющие положение малой оси, их фронтальные проекции определяют пересечение следа плоскости б с очерком сферы, а горизонтальные проекции являются соответственно высшей и низшей точками сечения
?2, 3- фронтальные проекции этих точек лежит на вертикальной оси сферы, а профильные проекции будут лежать на очерке сферы и определять зону видимости при построении эллипса на П3.
? 4, 5- две вершины эллипса, определяющие положение большой оси эллипса, положение их фронтальной проекции определяет перпендикуляр, опущенный из центра сферы к следу плоскости б.
? 6, 7- Фронтальные проекции этих точек лежат на горизонтальной оси сферы, т.е. принадлежат экватору сферы, их горизонтальная проекция лежит на очерке сферы и определяет зону видимости при построении эллипса на П1.
Линия пересечения плоскости б и сферы на фронтальной плоскости проекций совпадает со следом плоскости на ней отмечаем точки 12…82. Для нахождения горизонтальных проекций этих точек в общем случае используется метод вспомогательных секущих плоскостей (в- горизонтальные плоскости уровня) . Например, через точки 22, 32 проведем след плоскости в12 , на горизонтальной плоскости проекций линией пересечения плоскости в1 и сферы будет окружность m11 , а точки 21 и 31 лежат на этой окружности по линии связи ( в данном случае осевой линии). Таким образом находятся все точки, кроме 11 и 81 , которые ввиду своего положения на очерке фронтальной проекции сферы будут принадлежать горизонтальной осевой линии на плоскости П1. Построенные точки 11…81 соединим плавной кривой линией с учетом видимости.
Подобные документы
Начертательная геометрия - прикладная наука. Комплексный чертеж плоскости. Взаимные пересечения плоскостей, их перпендикулярность и параллельность с прямыми. Сечение поверхности сферы плоскостями. Пересечение поверхностей, аксонометрические проекции.
методичка [4,2 M], добавлен 03.02.2013Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.
курсовая работа [115,2 K], добавлен 10.01.2010Оптимальные фигуры многоугольников на плоскости. Соотношение размеров соседних фигур на плоскости на примере соприкасающихся окружностей. Реализация шестигранных ячеек в природе. Характеристика таких категорий: целое и части, дискретное и непрерывное.
статья [290,7 K], добавлен 28.03.2012Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.
дипломная работа [2,3 M], добавлен 24.06.2010Изучение правил и норм выполнения построения геометрических тел. Способы выполнения чертежей, эскизов, наглядных изображений. Конструктивный анализ пространства. Элементы рисунка, создающие иллюзию трехмерности. Место рисунка в творческом процессе.
курсовая работа [484,8 K], добавлен 07.04.2014Истоки, понятие аналитической геометрии. Метод координат на плоскости. Аффинная и Декартова система координат на плоскости, прямая и окружность. Аналитическое задание геометрических фигур. Применение аналитического метода к решению планиметрических задач.
курсовая работа [1,2 M], добавлен 12.05.2009Написание уравнения прямой, проходящей через определенную точку и удаленной от начала координат на заданное расстояние. Расчет длины высот параллелограмма. Построение плоскости и прямой, определение точки пересечения прямой и плоскости и угла между ними.
контрольная работа [376,1 K], добавлен 16.06.2012Сущность и графическое отображение игры на преследование, ее математический смысл и формулирование соответствующих теорем. Стратегия параллельного сближения и ее обоснование. Порядок преследования на плоскости с одним или несколькими преследователями.
творческая работа [24,9 K], добавлен 03.01.2010Уравнение плоскости, проходящей через точку и перпендикулярной заданному вектору, плоскости в отрезках, проходящей через три точки. Общее уравнение плоскости. Условие параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.
презентация [106,9 K], добавлен 21.09.2013Понятие параллельности как отношения между прямыми. Случаи расположения прямой и плоскости. Признаки параллельности прямой и плоскости. Основные свойства двух прямых. Отсутствие общих точек у прямой и плоскости. Признаки параллельности плоскостей.
презентация [1,5 M], добавлен 14.10.2014