Особенность дискретной математики

Суть основного правила комбинаторики. Анализ булевой алгебры характеристических векторов и высказываний. Особенность дизъюнктивных и конъюнктивных нормальных форм. Функционально-полные системы функций. Главные параметры поиска многочлена Жегалкина.

Рубрика Математика
Вид курс лекций
Язык русский
Дата добавления 08.02.2015
Размер файла 62,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Алгоритм нахождения максимального потока (Алгоритм Форда - Фалькерсона).

Берем любой поток в транспортной сети.

Строим граф перестроек g* по следующему правилу:

В него входят все вершины исходного графа g.

Те ребра, на которых значение функции потока в исходном графе g были равны 0, входят в новый граф без изменений со своими пропускными способностями.

Все ребра, на которых ф(x) > 0 в новом графе g* заменяются двумя ребрами x* и x**. Ребро x* направлено в ту же сторону, что и x, и пропускная способность c(x*) = c(x) - ф(x).

Ребро x** направлено в противоположную сторону ребру x, и пропускная способность c(x**) = ф(x).

Ребра с нулевой пропускной способностью можно не рисовать.

В графе g* ищем путь из А в В по ребрам с ненулевой пропускной способностью. Если его нет, то имеющийся поток является максимальным и алгоритм закончен. Иначе переходим к пункту 4.

(Этот путь называется увеличенной цепью. ????min(c(x)) - минимальное значение пропускной способности этой цепи).

Меняем значение функции потока в графе g для тех ребер, которые соответствуют найденному пути в графе перестроек по следующему правилу:

Если направление ребра x в графе g совпадает с направлением пути, то новое ф(x) = ф(x) + ?

Если же направление противоположно направлению пути, то ф(x) = ф(x) - ?

5. Переходим на шаг 2 с новым потоком.

Размещено на Allbest.ru


Подобные документы

  • Полнота и замкнутость системы булевых функций. Алгоритм построения таблицы истинности двойственной функции. Класс L линейных функций, сущность полинома Жегалкина. Распознавание монотонной функции по вектору ее значений. Доказательство теоремы Поста.

    учебное пособие [1,3 M], добавлен 20.08.2014

  • Основная функционально полная система логических функций. Законы алгебры логики в основной функционально полной системе и их следствия. Переместительный и распределительный законы. Закон инверсии (правило Де Моргана). Системы логических функций.

    реферат [40,5 K], добавлен 17.11.2008

  • Сокращенные, тупиковые дизъюнктивные нормальные формы. Полные системы булевых функций. Алгоритм Квайна, Мак-Класки минимизации булевой функции. Геометрическое представление логических функций. Геометрический метод минимизации булевых функций. Карты Карно.

    курсовая работа [278,1 K], добавлен 21.02.2009

  • Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.

    контрольная работа [133,5 K], добавлен 08.06.2010

  • Минимизация заданного выражения алгебры множеств на основании известных свойств. Анализ заданного бинарного отношения в общем виде. Вывод формул булевых функций для каждого элемента и схемы в целом. Преобразование формулы булевой функции логической схемы.

    контрольная работа [286,7 K], добавлен 28.02.2009

  • Логический синтез устройства с использованием соотношений булевой алгебры. Составление таблицы истинности. Основные соотношения булевой алгебры. Логическая функция в смысловой, словесной, вербальной, табличной и аналитической математической формах.

    лабораторная работа [83,6 K], добавлен 26.11.2011

  • Изучение булевых функций. Алгоритм представления булевых функций в виде полинома Жегалкина. Система функций множества. Алгебраические преобразования, метод неопределенных коэффициентов. Таблица истинности для определенного количества переменных.

    курсовая работа [701,9 K], добавлен 27.04.2011

  • Нахождение собственных значений и собственных векторов матриц. Нетривиальное решение однородной системы линейных алгебраических уравнений. Метод нахождения характеристического многочлена, предложенный А.М. Данилевским. Получение формы Жордано: form.exe.

    курсовая работа [53,4 K], добавлен 29.08.2010

  • История возникновения булевой алгебры, разработка системы исчисления высказываний. Методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Дизъюнкция, конъюнкция и отрицание, таблицы истинности.

    презентация [1,9 M], добавлен 22.02.2014

  • Представление с помощью кругов Эйлера множественного выражения. Законы и свойства алгебры множеств, упрощение выражений. Система функций, ее возможные базисы. Минимизирование булевой функции. Метод Квайна – Мак-Класки. Определение хроматического числа.

    контрольная работа [375,6 K], добавлен 17.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.