Теорії збіжності просторових відображень зі скінченним скривленням довжини
Умови, що забезпечують нормальність та замкненість сімей відображень скінченного скривлення довжини, поведінка дилатацій цих відображень при локально рівномірній збіжності. Узагальнені та посилені варіанти теорем збіжності для квазіконформних відображень.
Рубрика | Математика |
Предмет | Математичний аналіз |
Вид | автореферат |
Язык | украинский |
Прислал(а) | Є.О. Севостьянов |
Дата добавления | 07.08.2014 |
Размер файла | 261,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Загальні поняття про числові ряди. Ознака збіжності Куммера. Дослідження ознаки збіжності Раабе та використання ознаки Даламбера. Ознака збіжності Бертрана. Дослідження ознаки збіжності Гаусса. Застосування ознаки Діріхле для знакозмінних рядів.
курсовая работа [523,8 K], добавлен 25.03.2012Загальні поняття та основні властивості числових рядів. Додаткові ознаки збіжності числових рядів: ознака Куммера і Раабе, Бертрана та Гаусса, ознака Діріхле, їх порівняння та практичність застосування. Мала чутливість ознаки збіжності Даламбера.
курсовая работа [509,5 K], добавлен 29.02.2012Поняття диференційованості, похідної, диференціала. Теореми про диференційованість деяких відображень. Частинні похідні вищих порядків та матриця Якобі. Достатні умови диференційованості. Теореми про "скінченні прирости". Диференціали вищих порядків.
курсовая работа [1,8 M], добавлен 08.10.2011Метод простої ітерації Якобі і метод Зейделя. Необхідна і достатня умова збіжності методу простої ітерації для розв’язання системи лінейних рівнянь. Оцінка похибки. Діагональне домінування матриці як умова збіжності ітерації. Основні переваги цих методів.
презентация [79,9 K], добавлен 06.02.2014Властивості числових характеристик системи випадкових величин. Обчислення кореляційного моменту. Ведення комплексної випадкової величини, характеристичні функції. Види збіжності випадкових величин. Приклади доказів граничних теорем теорії ймовірностей.
реферат [113,9 K], добавлен 12.03.2011Поняття дискретної метрики. Аксiоматичне означення вiдстанi. Метричні простори та аксіоми зліченності. Відкриті і замкнуті множини, топологія і збіжність. Гомеоморфізм та ізоморфізм. Повні та нормовані простори. Принцип стискаючих відображень Банаха.
контрольная работа [533,3 K], добавлен 29.01.2014Елементи диференціального і інтегрального числення в лінійних нормованих просторах: диференціал і похідна Фреше, теореми (про диференційовність композиції відображень, про скінченні прирости), похідна Гато. Похідні Фреше та Гато в прикладах і задачах.
дипломная работа [456,6 K], добавлен 20.08.2010Чисельні методи рішення диференціальних рівнянь у частинних похідних 2-го порядку, початкові і крайові умови. Метод сіток та представлення часткових похідних у скінчено-різницевому вигляді. Структура похибки розв'язку задачі, стійкість і коректність.
курсовая работа [986,6 K], добавлен 22.08.2010Вивчення елементарних функцій, інтеграли від яких не є елементарними функціями, тобто вони не обчислюються в скінченному вигляді або не 6еруться. Наближені методи обчислення визначених інтегралів. Дослідження невласних інтегралів та ознаки їх збіжності.
реферат [1,1 M], добавлен 18.07.2010Обчислення власного інтеграла та встановлення його збіжності. Визначення площі фігури, яка обмежена лініями та координатними віссями; аркою циклоїди і віссю абсцис, кардіоїдою. Розрахунок об’ємів тіла, утворених обертанням фігури навколо осей Ох та Оу.
контрольная работа [923,7 K], добавлен 07.07.2013