Многоелементна задача Карлемана та її застосування до диференціальних рівнянь

Дослідження методу точного розв'язку задачі Карлемана у кільці для двох пар функцій в окремому випадку. Розгляд лінійних диференціальних, диференціально-різницевих та диференціальних рівнянь, які зводяться до задач Карлемана для смуги та кільця.

Рубрика Математика
Вид автореферат
Язык украинский
Дата добавления 04.03.2014
Размер файла 42,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

(где A(t), B(t), C(t) |t|=1 - известные функции из пространства Винера W, G(t), |t|=1 -известная функция из L2(|t|=1) а F(z) - неизвестная аналитическая функция в кольце R-1<|z| < R, 1<R<Ґ;

3) выделены классы линейных однородных дифференциальных уравнений n-го порядка, которые при помощи теории задачи Карлемана в полосе решены в явном виде; 4) разработан аналитический метод приближенного решения многоэлементной задачи Карлемана в полосе и матричной задачи Карлемана в кольце; 5) предложен новый подход к решению линейных однородных дифференциальных уравнений с осциллирующими коэффициентами вида

е (ak e ixg+bk e -ixg)y(k)(x) =0 , xОR .

k=0

Благодаря ему получены условия существования решения и построены конструктивно эти решения; 6) построено с обоснованием аналитическое приближенное решение пятиэлементной задачи, связанной с решением одной задачи теории упругости, которая известными методами не поддавалась решению; 7) изучены системы двух бесконечных систем "плавного перехода", в отдельных случаях получены их точные решения.

Ключевые слова: задача Карлемана, факторизация, кольцо, полоса, дифференциальное уравнение, преобразование Фурье.

Размещено на Allbest.ru


Подобные документы

  • Етапи розв'язування задачі дослідження певного фізичного явища чи процесу, зведення її до диференціального рівняння. Методика та схема складання диференціальних рівнянь. Приклади розв'язування прикладних задач за допомогою диференціального рівняння.

    контрольная работа [723,3 K], добавлен 07.01.2016

  • Розгляд крайової задачі для нелінійного рівняння другого порядку. Вивчення різницевого методу розв'язання крайових задач для звичайних диференціальних рівнянь. Метод прогонки - окремий випадок методу Гауса. Програма на алгоритмічній мові Turbo Pascal.

    курсовая работа [49,7 K], добавлен 10.04.2011

  • Поняття диференціальних рівнянь. Задача Коші і крайова задача. Класифікація методів для задачі Коші. Похибка методу Ейлера. Модифікований метод Ейлера-Коші. Пошук рішення задачі однокроковим методом Ейлера. Порівняння чисельного рішення з точним рішенням.

    презентация [294,4 K], добавлен 06.02.2014

  • Аналіз найвідоміших методів розв’язування звичайних диференціальних рівнянь і їх систем, користуючись рекомендованою літературою. Розробка відповідної схеми алгоритму. Розв’язання системи звичайних диференціальних рівнянь в за допомогою MathCAD.

    лабораторная работа [412,4 K], добавлен 21.10.2014

  • Чисельні методи рішення диференціальних рівнянь у частинних похідних 2-го порядку, початкові і крайові умови. Метод сіток та представлення часткових похідних у скінчено-різницевому вигляді. Структура похибки розв'язку задачі, стійкість і коректність.

    курсовая работа [986,6 K], добавлен 22.08.2010

  • Вивчення методів розв'язання лінійної крайової задачі комбінуванням двох задач Коші. Переваги та недоліки інших методів: прицілювання, колокацій, Гальоркіна, найменших квадратів та ін. Пошук єдиного розв'язку звичайного диференціального рівняння.

    курсовая работа [419,2 K], добавлен 29.08.2010

  • Класичні та сучасні наближені методи розв'язання диференціальних рівнянь та їх систем. Класифікація наближених методів розв'язування. Розв'язування трансцендентних, алгебраїчних і диференціальних рівнянь, методи чисельного інтегрування і диференціювання.

    отчет по практике [143,9 K], добавлен 02.03.2010

  • Рішення з заданим ступенем точності задачі Коші для системи диференціальних рівнянь на заданому інтервалі. Формування мінімальної погрішності на другому кінці. Графіки отриманих рішень і порівняння їх з точним рішенням. Опис математичних методів рішення.

    курсовая работа [258,9 K], добавлен 27.12.2010

  • Методи скінченних різниць або методи сіток як чисельні методи розв'язку інтегро-диференціальних рівнянь алгебри диференціального та інтегрального числення. порядок розв’язання задачі Діріхле для рівняння Лапласа методом сіток у прямокутної області.

    курсовая работа [236,5 K], добавлен 11.06.2015

  • Загальні властивості диференціальних рівнянь Ріккаті. Прості випадки інтегрованості в квадратурах. Побудова загального розв’язку у випадку, коли відомий один частинний розв’язок. Структура загального розв’язку, коли відомо два або три частинних розв’язки.

    курсовая работа [134,0 K], добавлен 22.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.