Многоелементна задача Карлемана та її застосування до диференціальних рівнянь
Дослідження методу точного розв'язку задачі Карлемана у кільці для двох пар функцій в окремому випадку. Розгляд лінійних диференціальних, диференціально-різницевих та диференціальних рівнянь, які зводяться до задач Карлемана для смуги та кільця.
Рубрика | Математика |
Вид | автореферат |
Язык | украинский |
Дата добавления | 04.03.2014 |
Размер файла | 42,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
(где A(t), B(t), C(t) |t|=1 - известные функции из пространства Винера W, G(t), |t|=1 -известная функция из L2(|t|=1) а F(z) - неизвестная аналитическая функция в кольце R-1<|z| < R, 1<R<Ґ;
3) выделены классы линейных однородных дифференциальных уравнений n-го порядка, которые при помощи теории задачи Карлемана в полосе решены в явном виде; 4) разработан аналитический метод приближенного решения многоэлементной задачи Карлемана в полосе и матричной задачи Карлемана в кольце; 5) предложен новый подход к решению линейных однородных дифференциальных уравнений с осциллирующими коэффициентами вида
е (ak e ixg+bk e -ixg)y(k)(x) =0 , xОR .
k=0
Благодаря ему получены условия существования решения и построены конструктивно эти решения; 6) построено с обоснованием аналитическое приближенное решение пятиэлементной задачи, связанной с решением одной задачи теории упругости, которая известными методами не поддавалась решению; 7) изучены системы двух бесконечных систем "плавного перехода", в отдельных случаях получены их точные решения.
Ключевые слова: задача Карлемана, факторизация, кольцо, полоса, дифференциальное уравнение, преобразование Фурье.
Размещено на Allbest.ru
Подобные документы
Етапи розв'язування задачі дослідження певного фізичного явища чи процесу, зведення її до диференціального рівняння. Методика та схема складання диференціальних рівнянь. Приклади розв'язування прикладних задач за допомогою диференціального рівняння.
контрольная работа [723,3 K], добавлен 07.01.2016Розгляд крайової задачі для нелінійного рівняння другого порядку. Вивчення різницевого методу розв'язання крайових задач для звичайних диференціальних рівнянь. Метод прогонки - окремий випадок методу Гауса. Програма на алгоритмічній мові Turbo Pascal.
курсовая работа [49,7 K], добавлен 10.04.2011Поняття диференціальних рівнянь. Задача Коші і крайова задача. Класифікація методів для задачі Коші. Похибка методу Ейлера. Модифікований метод Ейлера-Коші. Пошук рішення задачі однокроковим методом Ейлера. Порівняння чисельного рішення з точним рішенням.
презентация [294,4 K], добавлен 06.02.2014Аналіз найвідоміших методів розв’язування звичайних диференціальних рівнянь і їх систем, користуючись рекомендованою літературою. Розробка відповідної схеми алгоритму. Розв’язання системи звичайних диференціальних рівнянь в за допомогою MathCAD.
лабораторная работа [412,4 K], добавлен 21.10.2014Чисельні методи рішення диференціальних рівнянь у частинних похідних 2-го порядку, початкові і крайові умови. Метод сіток та представлення часткових похідних у скінчено-різницевому вигляді. Структура похибки розв'язку задачі, стійкість і коректність.
курсовая работа [986,6 K], добавлен 22.08.2010Вивчення методів розв'язання лінійної крайової задачі комбінуванням двох задач Коші. Переваги та недоліки інших методів: прицілювання, колокацій, Гальоркіна, найменших квадратів та ін. Пошук єдиного розв'язку звичайного диференціального рівняння.
курсовая работа [419,2 K], добавлен 29.08.2010Класичні та сучасні наближені методи розв'язання диференціальних рівнянь та їх систем. Класифікація наближених методів розв'язування. Розв'язування трансцендентних, алгебраїчних і диференціальних рівнянь, методи чисельного інтегрування і диференціювання.
отчет по практике [143,9 K], добавлен 02.03.2010Рішення з заданим ступенем точності задачі Коші для системи диференціальних рівнянь на заданому інтервалі. Формування мінімальної погрішності на другому кінці. Графіки отриманих рішень і порівняння їх з точним рішенням. Опис математичних методів рішення.
курсовая работа [258,9 K], добавлен 27.12.2010Методи скінченних різниць або методи сіток як чисельні методи розв'язку інтегро-диференціальних рівнянь алгебри диференціального та інтегрального числення. порядок розв’язання задачі Діріхле для рівняння Лапласа методом сіток у прямокутної області.
курсовая работа [236,5 K], добавлен 11.06.2015Загальні властивості диференціальних рівнянь Ріккаті. Прості випадки інтегрованості в квадратурах. Побудова загального розв’язку у випадку, коли відомий один частинний розв’язок. Структура загального розв’язку, коли відомо два або три частинних розв’язки.
курсовая работа [134,0 K], добавлен 22.01.2013