Математическая логика
Аксиоматический метод в математике. Конъюнктивная и дизъюнктивная нормальные формы. Построение исчисления высказываний в виде формальной системы. Формализация математических теорий на языке первого порядка. Теорема о полноте. Алгоритмы и машина Тьюринга.
Рубрика | Математика |
Предмет | Математика |
Вид | учебное пособие |
Язык | русский |
Прислал(а) | А.П. Ильиных |
Дата добавления | 07.08.2013 |
Размер файла | 267,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Определение формулы исчисления высказываний, основные цели математической логики. Построение формул алгебры высказываний. Равносильность формул исчисления высказываний, конъюнктивная и дизъюнктивная нормальная форма. Постановка проблемы разрешимости.
контрольная работа [34,3 K], добавлен 12.08.2010Понятие формальной системы. Основные понятия логики первого порядка. Доказательство неразрешимости проблемы остановки. Машина Тьюринга, ее структура. Вывод неразрешимости логики первого порядка из неразрешимости проблемы остановки и методом Геделя.
курсовая работа [243,0 K], добавлен 16.02.2011Основные определения математической логики, булевы и эквивалентные функции. Общие понятия булевой алгебры. Алгебра Жегалкина: высказывания и предикаты. Определение формальной теории. Элементы теории алгоритмов, рекурсивные функции, машина Тьюринга.
курс лекций [651,0 K], добавлен 08.08.2011Графическая интерпретация множеств и операций над ними. Математическая логика, булева алгебра. Совершенная конъюнктивная нормальная форма. Равносильные формулы и их доказательство. Полнота системы булевых функций. Логика предикатов, теория графов.
лекция [253,7 K], добавлен 01.12.2009Понятие, основные свойства элементарных булевых функций и соотношения между ними. Формулировка принципа двойственности. Совершенные дизъюнктивная и конъюнктивная нормальные формы. Многочлен (полином) Жегалкина. Суперпозиция и замыкание класса функций.
презентация [24,4 K], добавлен 05.02.2016Построение таблицы истинности. Доказательство истинности заключения путём построения дерева доказательства или методом резолюции. Выполнение различных бинарных операций. Построение графа вывода пустой резольвенты. Основные правила исчисления предикатов.
курсовая работа [50,7 K], добавлен 28.05.2015Математическая логика (бессмысленная логика), логика "здравого смысла" и современная логика. Математические суждения и умозаключения, их направления. Математическая логика и "Здравый смысл" в XXI веке. Неестественная логика в основаниях математики.
реферат [32,2 K], добавлен 21.12.2008Эвристика и особенности применения эвристики в математике. Понятие доказательства в математике. Эвристика как метод научного познания. Эвристический подход к построению математических доказательств в рамках логического подхода, при доказательстве теорем.
курсовая работа [177,2 K], добавлен 30.01.2009Исторические формы математических открытий. Пифагор: философия числа; дедуктивно-аксиоматический метод; раннее и позднее пифагорейство. Классика греческой науки, "Начала" Евклида. Великие эллины: Евдокс, Платон, Архимед, Птолемей; Александрийская школа.
дипломная работа [882,4 K], добавлен 08.04.2014Исторический процесс развития взглядов на существо математики как науки, основные этапы формирования аксиоматического метода. Теории групп, множеств, отображений и конгруэнтности (равенства) отрезков. Основные аксиоматические теоремы и их доказательства.
курсовая работа [26,2 K], добавлен 24.05.2009