Смешанная задача с интегральным условием для вырождающегося уравнения гиперболического типа
Исследование смешанной задачи для вырождающегося уравнения гиперболического типа с интегральным условием. Способы доказывания теоремы о существовании единственного обобщенного решения. Отличительные черты задач с нелокальными интегральными условиями.
Рубрика | Математика |
Предмет | Математика |
Вид | статья |
Язык | русский |
Прислал(а) | С.В. Кириченко |
Дата добавления | 31.05.2013 |
Размер файла | 318,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Обзор краевых задач для уравнения смешанного эллептико-гиперболического типа. Доказательство существования единственного решения краевой задачи для одного уравнения гиперболического типа со специальными условиями сопряжения на линии изменения типа.
контрольная работа [253,5 K], добавлен 23.04.2014Исследование задачи Дирихле для вырождающегося уравнения смешанного типа в прямоугольной области методами спектрального анализа. Обоснование корректности постановки нелокальных начально-граничных задач различных вырождающихся дифференциальных уравнений.
курсовая работа [135,1 K], добавлен 06.05.2011Анализ уравнения гиперболического типа - волнового уравнения. Метод распространяющихся волн. Формула Даламбера, неоднородное уравнение. Задача Коши, двумерное волновое уравнение. Теорема устойчивости решения задачи Коши. Формулы волнового уравнения.
реферат [1,0 M], добавлен 11.12.2014Поверхности второго порядка аналитической геометрии. Свойства гиперболического параболоида, порядок разыскания его прямолинейных образующих. Пример решения уравнения прямолинейных образующих для заданной поверхности гиперболического параболоида.
курсовая работа [2,5 M], добавлен 26.05.2019Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.
курсовая работа [1003,8 K], добавлен 29.11.2014Рассмотрение общих сведений обратных задач математической физики. Ознакомление с методами решения граничных обратных задач уравнений параболического типа. Описание численного решения данных задач для линейно упруго-пластического режима фильтрации.
диссертация [2,8 M], добавлен 19.06.2015Решение дифференциального уравнения, удовлетворяющие условию Липшица. Доказательство теоремы о существовании и единственности липшицевого решения. Принцип неподвижной точки (Шаудера). Пример неединственности (Winston). Доказательство по теореме Арцела.
реферат [109,4 K], добавлен 14.01.2010Уравнения параболического типа. Разностные схемы для уравнения теплопроводности, задача Коши. Явная и неявная разностные схемы. Применение двухслойных разностных шаблонов. Устойчивость двухслойных разностных схем. Решение задач методом прогонки.
лекция [494,0 K], добавлен 28.06.2009Первая краевая задача и граничное условие 1-го рода. Задачи с однородными граничными условиями. Задача с главными неоднородными условиями и ее вариационная постановка. Понятие обобщенного решения. Основные условия сопряжения и условия согласования.
презентация [71,8 K], добавлен 30.10.2013Математическое моделирование и особенности задачи распределения. Обоснование и выбор метода решения. Ручное решение задачи (венгерский метод), а также с использованием компьютера. Формулировка полученного результата в сопоставлении с условием задачи.
курсовая работа [383,9 K], добавлен 26.05.2010