Статистическое моделирование

Статистическое определение выходных результатов как основная цель статистического моделирования. Табличные и алгоритмические генераторы случайных чисел. Моделирование случайного события. Моделирование случайной величины с заданным законом распределения.

Рубрика Математика
Вид курс лекций
Язык русский
Дата добавления 16.04.2013
Размер файла 862,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Поскольку теперь в колоде 9 карт масти Ч, 9 карт масти П, 8 карт масти В, 9 карт масти Б, то интервал от 0 до 1 будет разбит на отрезки длиной: 9/35, 9/35, 8/35, 9/35, то есть [0.000-0.257], [0.257-0.514], [0.514-0.743], [0.743-1.000]. Разыграем случайное равномерно распределенное число в интервале от 0 до 1. Например, 0.321. Данное число попадает во второй интервал, соответствующий масти П.

Продолжая процесс, можно получить (в зависимости от конкретных случайных чисел), например, такую последовательность: В-П-В-Ч-Б-П-Ч-… (в качестве иллюстрации см. рис. 3.5).

Рис. 3.5 Иллюстрация работы генератора случайных чисел на примере выбора карт из колоды

Лекция 4. Моделирование случайной величины с заданным законом распределения

Большей информативностью, по сравнению с такими статистическими характеристиками как математическое ожидание, дисперсия, для инженера обладает закон распределения вероятности случайной величины X. Представим, что X принимает случайные значения из некоторого диапазона. Например, X - диаметр вытачиваемой детали. Диаметр может отклоняться от запланированного идеального значения под влиянием различных факторов, которые нельзя учесть, поэтому он является случайной слабо предсказуемой величиной.

Но в результате длительного наблюдения за выпускаемыми деталями можно отметить, сколько деталей из 1000 имели диаметр X1 (обозначим NX1), сколько деталей имели диаметр X2 (обозначим NX2) и так далее. В итоге можно построить гистограмму частости диаметров, откладывая для X1 величину NX1/1000, для X2 величину NX2/1000 и так далее. (Обратите внимание, если быть точным, NX1 - это число деталей, диаметр которых не просто равен X1, а находится в диапазоне от X1 - Д/2 до X1 + Д/2, где Д = X1 - X2). Важно, что сумма всех частостей будет равна 1 (суммарная площадь гистограммы неизменна).

Если X меняется непрерывно, опытов проведено очень много, то в пределе N - > ? гистограмма превращается в график распределения вероятности случайной величины. На рис. 4.1, а показан пример гистограммы дискретного распределения, а на рис. 4.1, б показан вариант непрерывного распределения случайной величины.

Рис. 4.1 Сравнение дискретного и непрерывного законов распределения случайной величины

В нашем примере закон распределения вероятности случайной величины показывает насколько вероятно то или иное значение диаметра выпускаемых деталей. Случайной величиной является диаметр детали.

В производстве и технике часто такие законы распределения заданы по условию задачи. Наша задача сейчас состоит в том, чтобы научиться имитировать появление конкретных случайных событий согласно вероятностям такого распределения.

Метод ступенчатой аппроксимации

Так как законы распределения вероятности событий могут быть различной формы, а не только равновероятными, то необходимо уметь превращать равномерный ГСЧ в генератор случайных чисел с заданным произвольным законом распределения. На рис. 1.3 это соответствует двум первым блокам метода статистического моделирования. Для этого непрерывный закон распределения вероятности события дискретизируем, превратим в дискретный.

Обозначим: hi - высота i-го столбца, f (x) - распределение вероятности (показывает насколько вероятно некоторое событие x). Значение hi операцией нормировки необходимо перевести в единицы вероятности появления значений x из интервала xi < x ? xi + 1: Pi = hi/ (h1 + h2 + … + hi + … + hn).

Операция нормировки обеспечивает сумму вероятностей всех n событий равную 1:

На рис. 4.2 показаны графически переход от произвольного непрерывного закона распределения к дискретному (рис. 4.2, а), отображение получаемых вероятностей на интервал rрр [0; 1] и генерация случайных событий с использованием эталонного равномерно распределенного ГСЧ (рис. 4.2, б).

Рис. 4.2 Иллюстрация метода ступенчатой аппроксимации

Заметим, что внутри интервала xi < x ?xi + 1 значение x теперь не различимо, одинаково. Метод огрубляет изначальную постановку задачи, переходя от непрерывного закона распределения к дискретному. Поэтому следует учитывать количество разбиений n из условий точности представления. На рис. 4.3 показан фрагмент алгоритма, реализующего описанный метод. Алгоритм генерирует случайное число, равномерно распределенное от 0 до 1. Затем, сравнивая границы отрезков, расположенных на интервале от 0 до 1, представляющих собой вероятности P выпадения тех или иных случайных величин X, определяет в цикле, какое из случайных событий i в результате этого выпадает.

Рис. 4.3 Блок-схема алгоритма, реализующего метод ступенчатой аппроксимации

Заметим, что внутри интервала xi < x ? xi + 1 значение x теперь не различимо, одинаково. Метод огрубляет изначальную постановку задачи, переходя от непрерывного закона распределения к дискретному. Поэтому следует учитывать количество разбиений n из условий точности представления.

Метод усечения

Метод используется в случае, когда функция задана аналитически (в виде формулы). График функции вписывают в прямоугольник (см. рис. 4.4). На ось Y подают случайное равномерно распределенное число из ГСЧ. На ось X подают случайное равномерно распределенное число из ГСЧ. Если точка в пересечении этих двух координат лежит ниже кривой плотности вероятности, то событие X произошло, иначе нет.

Недостатком метода является то, что те точки, которые оказались выше кривой распределения плотности вероятности, отбрасываются как ненужные, и время, затраченное на их вычисление, оказывается напрасным. Метод применим только для аналитических функций плотности вероятности.

Рис. 4.4 Иллюстрация метода усечения

На рис. 4.5 показан алгоритм, реализующий метод усечения. В цикле генерируется два случайных числа из диапазона от 0 до 1. Числа масштабируются в шкалу X и Y и проверяется попадание точки со сгенерированными координатами под график заданной функции Y = f (X). Если точка находится под графиком функции, то событие X произошло с вероятностью Y, иначе точка отбрасывается.

Рис. 4.5 Блок-схема алгоритма, реализующего метод усечения

Метод взятия обратной функции

Допустим, что нам задан интегральный закон распределения вероятности F (x), где f (x) - функция плотности вероятности и

Тогда достаточно разыграть случайное число, равномерно распределенное в интервале от 0 до 1. Поскольку функция F тоже изменяется в данном интервале, то случайное событие x можно определить взятием обратной функции по графику или аналитически: x = F-1 (r). Здесь r - число, генерируемое эталонным ГСЧ в интервале от 0 до 1, x1 - сгенерированная в итоге случайная величина. Графически суть метода изображена на рис. 4.6

Рис. 4.6 Иллюстрация метода обратной функции для генерации случайных событий x, значения которых распределены непрерывно. На рисунке показаны графики плотности вероятности и интегральной плотности вероятности от х

Данным методом особенно удобно пользоваться в случае, когда интегральный закон распределения вероятности задан аналитически и возможно аналитическое взятие обратной функции от него, как это и показано на следующем примере.

Пример 1. Примем к рассмотрению экспоненциальный закон распределения вероятности случайных событий f (x) = л · e-лx. Тогда интегральный закон распределения плотности вероятности имеет вид: F (x) = 1 - e-лx.

Так как r и F в данном методе предполагаются аналогичными и расположены в одном интервале, то, заменяя F на случайное число r, имеем: r = 1 - e-лx. Выражая искомую величину x из этого выражения (то есть, обращая функцию exp ()), получаем: x = - 1/л · ln (1 - r).

Так как в статическом смысле (1 - r) и r - это одно и тоже, то x = - 1/л · ln (r). На рис. 4.7 показан фрагмент алгоритма, реализующего метод обратной функции для экспоненциального закона.

Рис. 4.7 Фрагмент блок-схемы алгоритма, реализующей метод обратной функции для экспоненциального закона

Размещено на Allbest.ru


Подобные документы

  • Распределение дискретной случайной величины по геометрическому закону распределения, проверка теоремы Бернулли на примере моделирования электрической схемы. Математическое моделирование в среде Turbo Pascal. Теоретический расчёт вероятности работы цепи.

    контрольная работа [109,2 K], добавлен 31.05.2010

  • Теория вероятностей и математическая статистика являются науками о методах количественного анализа массовых случайных явлений. Множество значений случайной величины называется выборкой, а элементы множества – выборочными значениями случайной величины.

    реферат [77,8 K], добавлен 26.12.2008

  • Моделирование случайной величины, распределённой по нормальному закону. Построение доверительных интервалов для математического ожидания и дисперсии, соответствующих доверительной вероятности. Оценка статистических характеристик случайного процесса.

    курсовая работа [744,3 K], добавлен 07.06.2010

  • Назначение и принципы действия корреляционно-экстремальной навигационной системы, особенности ее программно-аппаратной реализации, целесообразность статистического моделирования. Описание технологического процесса разработки и отладки программы.

    магистерская работа [1,5 M], добавлен 06.12.2013

  • Формулировка теоремы Бернулли, проверка ее с помощью программы. Моделирование случайной величины методом кусочной аппроксимации. График распределения Коши, построение гистограммы и нахождения числовых характеристик, составление статистического ряда.

    курсовая работа [226,8 K], добавлен 31.05.2010

  • Теорема Бернулли на примере моделирования электросхемы. Моделирование случайной величины, имеющей закон распределения модуля случайной величины, распределенной по нормальному закону. Проверка критерием Х2: имеет ли данный массив закон распределения.

    курсовая работа [2,3 M], добавлен 31.05.2010

  • События и случайные величины. Функция распределения и ее характерные свойства. Сущность и определение основных числовых характеристик случайных величин: математическое ожидание, дисперсия, моменты. Критерии и факторы, влияющие на их формирование.

    контрольная работа [118,5 K], добавлен 30.01.2015

  • Понятия теории вероятностей и математической статистики, применение их на практике. Определение случайной величины. Виды и примеры случайных величин. Закон распределения дискретной случайной величины. Законы распределения непрерывной случайной величины.

    реферат [174,7 K], добавлен 25.10.2015

  • Построение доверительных интервалов для математического ожидания и дисперсии, соответствующие вероятности. Исследование статистических характеристик случайной величины на основе выбора объема. Теоретическая и эмпирическая плотность распределения.

    курсовая работа [594,4 K], добавлен 02.01.2012

  • Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.

    курсовая работа [29,7 K], добавлен 31.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.